
Wombat Mecanum Wheel Control System: Python
Implementation and Omnidirectional Motion Algorithms

Oscar Yan，Muyao Zhang，Oliver Yan

As the new Botball utilizes the new Mecanum Wheel System compared to the regular
wheels, it is crucial to understand and know how to use its functions. Our paper aims to
share our knowledge and help others regarding the new system.

What is Omnidirectional Movement?

Omnidirectional movement refers to the ability to move in any direction forward, backward,
sideways, and diagonally without needing to turn first.

Mecanum wheels are a special type of wheel that enable this by using rollers set at a
45-degree angle around each wheel. By spinning the wheels at different speeds and
directions, the robot can move in any direction smoothly.

This mechanic is very useful not only in Botball as it allows for more efficiency and
prevention in clashing into obstacles but also in many real life scenarios such as in the
military or everyday transport.

Initial Move

Our initial move was to test each motor to see if they were working, it was really important to
have matching, corresponding wires so that the code was executed correctly. For each
motor, we tested simple code that allowed it to move, either forwards or backwards. After all
of them were working, we found this diagram which helped us a lot in finding how to code for
new movements.

This diagram clearly displays all the necessary ports to move to activate a certain
movement, for example going right diagonal would need the top left motor to go forward and
bottom right to go forward.

Our Port Setting​

Here is the following code for figure a - f in the diagram
a)

def forward(speed=80, duration=800):
 k.motor(0, -speed)
 k.motor(1, speed)
 k.motor(2, -speed)
 k.motor(3, speed)
 k.msleep(duration)
 stop_motors()

b)

def left(speed=80, duration=800):
 k.motor(0, speed)
 k.motor(1, speed)
 k.motor(2, -speed)
 k.motor(3, -speed)
 k.msleep(duration)
 stop_motors()

c)

def right_diagonal():
 k.motor(0, 300)
 k.motor(1, 0)
 k.motor(2, 0)
 k.motor(3, 300)
 k.msleep(3200)

d)

def right_turn():
 k.motor(0, 300)
 k.motor(1, 0)
 k.motor(2, 0)
 k.motor(3, 300)
 k.msleep(3200)

e)

def whole_right():
 k.motor(0, -300)
 k.motor(1, 300)
 k.motor(2, -300)
 k.motor(3, 300)
 k.msleep(3200)

f)

def whole_right():
 k.motor(0, 0)
 k.motor(1, 0)
 k.motor(2, -300)
 k.motor(3, 300)
 k.msleep(3200)

Common Issues
We have faced some issues that hindered the performance of robots such as, as mentioned
before, not matching wires and ports that do not correspond with the code.

Additionally, debris may be caught up in the mecanum wheel mechanism which does
not make it work well.

Other smaller issues such as the robot not turning or sliding well required fine-tuning
skills. This is slightly tweaking the arguments for certain functions and observing the
output.

Our First Code
``` 
#!/usr/bin/python3 
import os, sys 
import math 
sys.path.append("/usr/lib") 
import _kipr as k 
 
# Basic movement functions 
def forward(speed=80, duration=800): 
    k.motor(0, -speed) 
    k.motor(1, speed) 
    k.motor(2, -speed) 
    k.motor(3, speed) 
    k.msleep(duration) 
    stop_motors() 
 
def backward(speed=80, duration=800): 
    k.motor(0, speed) 
    k.motor(1, -speed) 
    k.motor(2, speed) 
    k.motor(3, -speed) 
    k.msleep(duration) 
    stop_motors() 
 
def left(speed=80, duration=800): 
    k.motor(0, speed) 
    k.motor(1, speed) 
    k.motor(2, -speed) 
    k.motor(3, -speed) 
    k.msleep(duration) 
    stop_motors() 
 
def right(speed=80, duration=800): 
    k.motor(0, -speed) 
    k.motor(1, -speed) 
    k.motor(2, speed) 
    k.motor(3, speed) 
    k.msleep(duration) 



    stop_motors() 
 
# Omnidirectional slide function 
def slide_move(angle, speed=80, duration=800): 
    rad = math.radians(angle) 
     
    vx = math.cos(rad) 
    vy = math.sin(rad) 
     
    motor0_speed = (-vx - vy) * speed 
    motor1_speed = (vx - vy) * speed 
    motor2_speed = (-vx + vy) * speed 
    motor3_speed = (vx + vy) * speed 
     
    motor0_speed = max(-100, min(100, motor0_speed)) 
    motor1_speed = max(-100, min(100, motor1_speed)) 
    motor2_speed = max(-100, min(100, motor2_speed)) 
    motor3_speed = max(-100, min(100, motor3_speed)) 
     
    k.motor(0, int(motor0_speed)) 
    k.motor(1, int(motor1_speed)) 
    k.motor(2, int(motor2_speed)) 
    k.motor(3, int(motor3_speed)) 
     
    k.msleep(duration) 
    stop_motors() 
 
# Rotation function 
def turn(angle, speed=80): 
    time_per_degree = 7500.0 / 360.0 * (80.0 / speed) 
    duration = int(abs(angle) * time_per_degree) 
     
    if angle > 0:  # Right turn (clockwise) 
        k.motor(0, -speed) 
        k.motor(1, -speed) 
        k.motor(2, -speed) 
        k.motor(3, -speed) 
    else:  # Left turn (counter-clockwise) 
        k.motor(0, speed) 
        k.motor(1, speed) 
        k.motor(2, speed) 
        k.motor(3, speed) 
     
    k.msleep(duration) 
    stop_motors() 
 
# Stop all motors 
def stop_motors(): 



    k.motor(0, 0) 
    k.motor(1, 0) 
    k.motor(2, 0) 
    k.motor(3, 0) 
 
def main(): 
    # Test basic movements 
    ''' 
    forward(80, 1000) 
    k.msleep(500) 
     
    backward(80, 1000) 
    k.msleep(500) 
     
    left(80, 1000) 
    k.msleep(500) 
     
    right(80, 1000) 
    k.msleep(500) 
     
    # Test diagonal movements 
    slide_move(45, 80, 1000) 
    k.msleep(500) 
     
    slide_move(135, 80, 1000) 
    k.msleep(500) 
     
    slide_move(225, 80, 1000) 
    k.msleep(500) 
     
    slide_move(315, 80, 1000) 
    k.msleep(500) 
     
    # Test various angle movements 
    slide_move(30, 80)      # Right-forward 30 degrees 
    k.msleep(400) 
     
    slide_move(-30, 80)     # Left-forward 30 degrees 
    k.msleep(400) 
     
    slide_move(60, 80)      # Right-forward 60 degrees 
    k.msleep(400) 
     
    slide_move(-60, 80)     # Left-forward 60 degrees 
    k.msleep(400) 
    ''' 
    # Test rotations 
    turn(90, 80) 



    k.msleep(500) 
     
    turn(-90, 80) 
    k.msleep(500) 
     
    turn(45, 80) 
    k.msleep(500) 
     
    turn(-45, 80) 
    k.msleep(500) 
     
    turn(180, 60) 
    k.msleep(500) 
     
    # Complex movement patterns 
    forward(100, 500) 
    turn(90, 80) 
    forward(100, 500) 
    turn(90, 80) 
    forward(100, 500) 
    turn(90, 80) 
    forward(100, 500) 
    k.msleep(1000) 
     
    # Circle pattern with slide moves 
    for i in range(8): 
        slide_move(i * 45, 80, 300) 
        k.msleep(200) 
     
    # Figure-8 pattern 
    slide_move(45, 80, 1000) 
    turn(90, 60) 
    slide_move(315, 80, 1000) 
    turn(-90, 60) 
    slide_move(45, 80, 1000) 
    turn(-90, 60) 
    slide_move(315, 80, 1000) 
     
    stop_motors() 
 
if __name__ == "__main__": 
    main() 
``` 

Explanation

First we tested for basic movements such as going forward, backwards left and right.
Although simple, It took quite some attempts to nail it down.

We implemented the Omnidirection function to achieve full omnidirectional control. This
function accepts an angle in degrees and uses trigonometric functions to calculate the x and
y velocity components (vx and vy) based on that angle. These components are then used to
compute the individual speeds for each motor, taking into account the 45-degree roller
orientation of mecanum wheels. This calculation allows the robot to move smoothly in any
direction, including diagonals and custom angles, while maintaining its orientation.

To add rotation, we created the turn function. This rotates the robot around its center by
setting all four motors to spin in the same direction. The duration of the turn is calculated
based on the desired angle and a time-per-degree ratio, which we adjusted based on motor
speed. This function allows the robot to perform precise angle turns without any linear
displacement.

Additionally, we used the circle slide_move function in a loop to perform a circular pattern by
sliding at 45-degree intervals around a full 360 degrees. This demonstrated the robot’s ability
to follow curved paths by combining directional vectors. It also confirmed the effectiveness of
our angle-based motion control using mecanum wheels.

Upgraded Code

However, to ensure more safety and efficiency, we have upgraded our previous code. The
newer code incorporates an acceleration mechanic and deceleration mechanic to ensure the
bot moves efficiently, lowering the risk of accidental crashes or failure to halt in time. These
mechanics will be extremely beneficial for teams who are trying to use the mecanum wheels
to the max.

Here is our code with the acceleration and deceleration:
``` 
#!/usr/bin/python3 
import os, sys 
import math 
sys.path.append("/usr/lib") 
import _kipr as k 
 
# Basic movement functions 
def forward(speed=80, duration=800): 
    k.motor(0, -speed) 
    k.motor(1, speed) 
    k.motor(2, -speed) 
    k.motor(3, speed) 
    k.msleep(duration) 
    stop_motors() 
 
def backward(speed=80, duration=800): 
    k.motor(0, speed) 
    k.motor(1, -speed) 



    k.motor(2, speed) 
    k.motor(3, -speed) 
    k.msleep(duration) 
    stop_motors() 
 
def left(speed=80, duration=800): 
    k.motor(0, speed) 
    k.motor(1, speed) 
    k.motor(2, -speed) 
    k.motor(3, -speed) 
    k.msleep(duration) 
    stop_motors() 
 
def right(speed=80, duration=800): 
    k.motor(0, -speed) 
    k.motor(1, -speed) 
    k.motor(2, speed) 
    k.motor(3, speed) 
    k.msleep(duration) 
    stop_motors() 
 
# Omnidirectional slide function 
def slide_move(angle, speed=80, duration=800): 
    rad = math.radians(angle) 
     
    vx = math.cos(rad) 
    vy = math.sin(rad) 
     
    motor0_speed = (-vx - vy) * speed 
    motor1_speed = (vx - vy) * speed 
    motor2_speed = (-vx + vy) * speed 
    motor3_speed = (vx + vy) * speed 
     
    motor0_speed = max(-100, min(100, motor0_speed)) 
    motor1_speed = max(-100, min(100, motor1_speed)) 
    motor2_speed = max(-100, min(100, motor2_speed)) 
    motor3_speed = max(-100, min(100, motor3_speed)) 
     
    k.motor(0, int(motor0_speed)) 
    k.motor(1, int(motor1_speed)) 
    k.motor(2, int(motor2_speed)) 
    k.motor(3, int(motor3_speed)) 
     
    k.msleep(duration) 
    stop_motors() 
 
# Smooth slide with acceleration and deceleration 
def slide_move_smooth(angle, max_speed=80, duration=800): 



    rad = math.radians(angle) 
    vx = math.cos(rad) 
    vy = math.sin(rad) 
     
    # Time segments 
    accel_time = int(duration * 0.25)  # 25% acceleration 
    const_time = int(duration * 0.5)   # 50% constant speed 
    decel_time = int(duration * 0.25)  # 25% deceleration 
     
    steps = 10  # Number of steps for smooth transition 
     
    # Acceleration phase 
    for i in range(steps): 
        current_speed = max_speed * (i + 1) / steps 
         
        motor0_speed = (-vx - vy) * current_speed 
        motor1_speed = (vx - vy) * current_speed 
        motor2_speed = (-vx + vy) * current_speed 
        motor3_speed = (vx + vy) * current_speed 
         
        k.motor(0, int(motor0_speed)) 
        k.motor(1, int(motor1_speed)) 
        k.motor(2, int(motor2_speed)) 
        k.motor(3, int(motor3_speed)) 
         
        k.msleep(accel_time // steps) 
     
    # Constant speed phase 
    motor0_speed = (-vx - vy) * max_speed 
    motor1_speed = (vx - vy) * max_speed 
    motor2_speed = (-vx + vy) * max_speed 
    motor3_speed = (vx + vy) * max_speed 
     
    k.motor(0, int(motor0_speed)) 
    k.motor(1, int(motor1_speed)) 
    k.motor(2, int(motor2_speed)) 
    k.motor(3, int(motor3_speed)) 
     
    k.msleep(const_time) 
     
    # Deceleration phase 
    for i in range(steps): 
        current_speed = max_speed * (steps - i) / steps 
         
        motor0_speed = (-vx - vy) * current_speed 
        motor1_speed = (vx - vy) * current_speed 
        motor2_speed = (-vx + vy) * current_speed 
        motor3_speed = (vx + vy) * current_speed 



         
        k.motor(0, int(motor0_speed)) 
        k.motor(1, int(motor1_speed)) 
        k.motor(2, int(motor2_speed)) 
        k.motor(3, int(motor3_speed)) 
         
        k.msleep(decel_time // steps) 
     
    stop_motors() 
 
# PID-based smooth movement with distance control 
def slide_move_pid(angle, distance_mm, max_speed=80): 
    # PID constants - tune these for your robot 
    Kp = 0.8   # Proportional gain 
    Ki = 0.1   # Integral gain 
    Kd = 0.3   # Derivative gain 
     
    # Convert angle to radians 
    rad = math.radians(angle) 
    vx = math.cos(rad) 
    vy = math.sin(rad) 
     
    # Timing 
    dt = 50  # milliseconds per loop 
     
    # PID variables 
    error_sum = 0 
    last_error = distance_mm 
     
    # Estimated distance traveled 
    distance_traveled = 0 
    speed_to_distance = 0.5  # Calibrate this value for your robot 
     
    while abs(distance_mm - distance_traveled) > 5:  # 5mm tolerance 
        # Calculate error 
        error = distance_mm - distance_traveled 
         
        # PID calculation 
        P = Kp * error 
        I = Ki * error_sum 
        D = Kd * (error - last_error) / dt 
         
        # Calculate speed 
        speed = P + I + D 
        speed = max(-max_speed, min(max_speed, speed)) 
         
        # Apply smooth limits near target 
        if abs(error) < 50:  # Within 50mm of target 



            speed = speed * (abs(error) / 50)  # Linear reduction 
         
        # Set motor speeds 
        motor0_speed = (-vx - vy) * speed 
        motor1_speed = (vx - vy) * speed 
        motor2_speed = (-vx + vy) * speed 
        motor3_speed = (vx + vy) * speed 
         
        k.motor(0, int(motor0_speed)) 
        k.motor(1, int(motor1_speed)) 
        k.motor(2, int(motor2_speed)) 
        k.motor(3, int(motor3_speed)) 
         
        # Update distance estimate 
        distance_traveled += abs(speed) * speed_to_distance * dt / 1000.0 
         
        # Update PID variables 
        error_sum += error * dt 
        last_error = error 
         
        k.msleep(dt) 
     
    stop_motors() 
 
# Rotation function 
def turn(angle, speed=80): 
    time_per_degree = 7500.0 / 360.0 * (80.0 / speed) 
    duration = int(abs(angle) * time_per_degree) 
     
    if angle > 0:  # Right turn (clockwise) 
        k.motor(0, -speed) 
        k.motor(1, -speed) 
        k.motor(2, -speed) 
        k.motor(3, -speed) 
    else:  # Left turn (counter-clockwise) 
        k.motor(0, speed) 
        k.motor(1, speed) 
        k.motor(2, speed) 
        k.motor(3, speed) 
     
    k.msleep(duration) 
    stop_motors() 
 
# Stop all motors 
def stop_motors(): 
    k.motor(0, 0) 
    k.motor(1, 0) 
    k.motor(2, 0) 



    k.motor(3, 0) 
 
def main(): 
    # Test basic movements 
    forward(80, 1000) 
    k.msleep(500) 
     
    backward(80, 1000) 
    k.msleep(500) 
     
    left(80, 1000) 
    k.msleep(500) 
     
    right(80, 1000) 
    k.msleep(500) 
     
    # Test smooth movements 
    slide_move_smooth(0, 80, 1500)     # Forward with smooth accel/decel 
    k.msleep(500) 
     
    slide_move_smooth(45, 80, 1500)    # Diagonal with smooth motion 
    k.msleep(500) 
     
    slide_move_smooth(90, 80, 1500)    # Right with smooth motion 
    k.msleep(500) 
     
    # Test PID movements (distance-based) 
    slide_move_pid(0, 300, 80)         # Forward 300mm 
    k.msleep(500) 
     
    slide_move_pid(180, 300, 80)       # Backward 300mm 
    k.msleep(500) 
     
    slide_move_pid(45, 200, 60)        # Diagonal 200mm at lower speed 
    k.msleep(500) 
     
    # Comparison test: normal vs smooth 
    slide_move(90, 80, 1000)           # Normal right movement 
    k.msleep(1000) 
     
    slide_move_smooth(90, 80, 1000)    # Smooth right movement 
    k.msleep(1000) 
     
    # Test rotation 
    turn(90, 40) 
    k.msleep(500) 
     
    turn(-90, 40) 



    k.msleep(500) 
     
    stop_motors() 
 
if __name__ == "__main__": 
    main() 
``` 


The updated version of our code keeps many of the same core functions as the original,
such as moving forward, backward, left, and right.

The biggest difference in the new version is the introduction of smoother and more controlled
movement. The slide_move_smooth function replaces the sudden start-and-stop motion of
the original slide_move with gradual acceleration and deceleration. This function splits the
movement into three parts: the first part slowly increases speed, the middle part keeps the
robot moving at full speed, and the last part slows the robot down until it stops. These
changes make the robot move more naturally and help prevent slipping, bouncing, or
sudden shifts that could throw it off course. It’s especially useful for moving over longer
distances or when accuracy is important.

Another new feature in the updated code is slide_move_pid, which allows the robot to move
a set distance in millimeters using a control method called PID(Proportional, Integral, and
Derivative). This function constantly checks how far the robot is from its target and adjusts
the speed to match. If the robot is far away, it moves quickly. As it gets closer, it slows down
to avoid overshooting. This makes the movement more accurate and consistent, which is
really useful when the robot needs to stop exactly at a certain point.

The turning function remains the same in both versions. It rotates the robot on the spot by
spinning all four wheels in the same direction. The robot turns clockwise or
counter-clockwise depending on whether the input angle is positive or negative. The speed
and time are calculated based on the angle, which gives the robot control over how much it
rotates.

Ultimately, the newer code adds smarter and smoother movement. The acceleration and
deceleration make the robot feel more controlled and realistic, while the PID function adds
accuracy when traveling specific distances. These features improve how the robot handles
tasks and make it more reliable during competitions or real-world use. Compared to the
original version, the robot is now better at avoiding errors, moving smoothly, and stopping
exactly where it needs to.

References:

Wikipedia contributors. (2025, July 2). Mecanum wheel. In Wikipedia, The Free
Encyclopedia. Retrieved July 8, 2025, from https://en.wikipedia.org/wiki/Mecanum_wheel

https://en.wikipedia.org/wiki/Mecanum_wheel

Game Manual 0 Contributors. (n.d.). Mecanum TeleOp. In Game Manual 0 software tutorials.
Retrieved July 8, 2025, from
https://gm0.org/en/latest/docs/software/tutorials/mecanum-drive.html

https://gm0.org/en/latest/docs/software/tutorials/mecanum-drive.html
https://gm0.org/en/latest/docs/software/tutorials/mecanum-drive.html

