
A Next.js Blockly-Based C++ Code Generator for a
Custom Robotics Library

Leopold Kernegger
Department of Computer Science

TGM Vienna
Vienna, Austria

leopold.kernegger@tgm.ac.at

Abstract—This paper introduces a web-based visual program-
ming platform that leverages Google’s Blockly and the Next.js
framework to generate structured C++ code for a modular
robotics library. The system is designed to support rapid and
reliable robotics development, especially in educational settings
and competitions such as Botball at the Global Conference on Ed-
ucational Robotics (GCER). Through visual abstraction and code
synthesis, the platform lowers the barrier to entry for robotics
programming while maintaining flexibility and performance for
advanced users.

Index Terms—Blockly, Next.js, C++, Robotics, Visual Program-
ming, Code Generation, Embedded Systems

I. INTRODUCTION

The growing popularity of robotics in education has at-
tracted a diverse audience, including many with limited
programming experience. Visual programming environments,
such as Google’s Blockly [1], are increasingly used to bridge
this gap by offering block-based code construction. In compet-
itive and educational contexts like Botball at GCER, partici-
pants are often tasked with rapidly prototyping robot behavior
under time pressure. This demands intuitive yet powerful
development tools.

We present a browser-based solution that combines Blockly
with the Next.js frontend framework to generate syntactically
correct and hardware-ready C++ code. The system integrates
directly with a modular robotics library, enabling users to
construct full robotics applications visually—without writing
a single line of C++. This significantly lowers the entry
barrier for beginners [2], [3] while providing a foundation that
remains usable for advanced users seeking rapid prototyping
capabilities.

II. SYSTEM ARCHITECTURE

The application is composed of three tightly integrated
subsystems that together enable block-based robotics devel-
opment:

A. Blockly Workspace

The Blockly workspace serves as the visual layer, providing
a dynamic block editor for composing logic. We define custom
blocks for robotics-specific tasks such as sensor registration,
motor control, conditional logic, and task sequencing. Each
block includes metadata (e.g., allowed connections, default
values, color) to assist users in building valid configurations.

B. Next.js Frontend
The frontend is implemented using Next.js with TypeScript,

taking advantage of server-side rendering for rapid load times
and smooth user interaction. The workspace is hosted in a
React component, allowing us to bind the Blockly API with
custom hooks for code generation, workspace management,
and exporting generated C++ files. The layout separates edit-
ing, preview, and export functions into modular panes.

C. C++ Backend Library
The robotics library provides the code target for all Blockly-

generated output. It exposes high-level abstractions for motors,
sensors, task scheduling, and lifecycle handling. Internally,
the library is organized into subsystems: SensorRegistry, Im-
provedMotor, MotorController, and LineManager. These are
initialized via a central Lifecycle class, which manages setup,
execution, and teardown of the robot’s behavior [4].

III. BLOCKLY BLOCK DESIGN AND MOTIVATION

The Blockly-based visual interface plays a critical role
in enabling users—particularly those without extensive C++
knowledge—to construct robotics programs through intuitive
drag-and-drop blocks. This section explains the purpose and
rationale behind each major block category, including integra-
tion into the code generation pipeline and interaction with our
robotics library.

A. Blockly Integration Overview
As defined in cpprunner.tsx, the Blockly workspace

is initialized dynamically within a React component using the
official Blockly API. The toolbox provides domain-specific
blocks grouped into categories such as Program, Classes,
Methods, Sensors, Tasks, Control, Logic, and Math. Every
change in the workspace triggers the cppGenerator, which
converts the visual representation into valid C++ code. Users
can view and run this code directly through a backend API.

B. Block Categories and Purpose
a) Sensor Blocks: Sensor blocks like register

sensor name and read-digital allow the user to reg-
ister and access named sensor values. The dropdowns in the
read blocks are populated dynamically based on other blocks
in the workspace, ensuring consistency between defined and
accessed sensors (see Fig. 1).



Fig. 1. Sensor registration and value reading blocks.

b) Main and Class Blocks: The cpp_main block
(Fig. 3) wraps the program’s entry point and includes an
input for sequential statements. The cpp_class block lets
users define custom classes that extend existing ones like
Lifecycle. This visual abstraction simplifies extending base
logic and adding methods such as calibrate or wait via
override blocks.

Fig. 2. Main program block.

Fig. 3. Lifecycle class definition block.

c) Task Blocks: Specialized blocks such as move-up
task or move task speed directly map to the lifecy-
cle task system described earlier. They create objects like
MovingTask or MovingUpTask and add them to the
lifecycle’s execution queue with user-defined labels and pa-
rameters.

d) Logic and Control: Logic (if, and/or, ==) and
math blocks (+, modulo, etc.) enable sensor-driven and
conditional behavior. Combined with looping constructs
(repeat), users can create sophisticated control logic graph-
ically.

C. Why Blockly?

Blockly enables:
• Semantic Constraints: Users can’t misconnect blocks

that don’t make sense [5].

• Dynamic Linking: Sensor blocks are context-aware (e.g.,
dropdowns show existing names only).

• Clear Visualization: Beginners understand flow and
logic via spatial layout.

• C++ Fidelity: All blocks generate C++ that integrates
directly with our backend.

D. Custom Block Logic

All blocks are registered and translated
in customBlocks.ts. The system uses
defineBlocksWithJsonArray for structural definition
and attaches a C++ code generator to each block via
cppGenerator.forBlock. The generator supports
precedence and expression handling, including fallbacks for
unhandled types. This design supports future extensibility [6].

E. Execution and Feedback Loop

The Run C++ button compiles the generated code via
a backend service and prints console output in real time,
reinforcing the correctness of block configurations. This im-
mediate feedback helps both in debugging and in learning C++
semantics by example [7].

F. Summary

The visual block system provides a robust layer atop our
robotics backend, abstracting low-level details while preserv-
ing expressiveness. By visually guiding users through robot
logic and translating it to compilable code, Blockly bridges
the gap between beginner usability and expert control.

IV. ROBOTICS LIBRARY ARCHITECTURE

The library is organized into independent modules, each
handling a specific concern:

A. Communication

A UDP broadcast system in heartbeat.cpp sends and re-
ceives robot state in JSON format, enabling coordination and
telemetry in multi-robot systems.

B. Motor Control

Motor control modules include:

• SolarboticMotorController: Supports simple differen-
tial drive with PID-controlled turning.

• MecanumMotorController: Enables omnidirectional
movement using trigonometric vector logic.

Both controllers inherit from a shared base and are accessed
via a singleton MotorController.

C. Motion Abstractions

• ImprovedMotor: Threaded motor control with multiple
modes (velocity, PID, positional).

• ImprovedServo: Uses degree-to-tick mapping and easing
interpolation for smooth actuation.



D. Sensing and Calibration

The SensorRegistry manages dynamic sensor registration
and calibration. Analog sensors are median-filtered for robust-
ness [8]. Light sensors and gyro correction are handled through
additional modules like until light.cpp.

E. Navigation

• LineManager: Provides proportional line-following and
crossing detection.

• Playground: Encodes a node graph with Dijkstra-based
routing [9].

• SquareUp: Aligns the robot using wall or line-based
feedback.

F. Utility Modules

Includes:
• Easing profiles (linear, exponential, cubic).
• Spatial math using Vector2D/Vector3D.
• terminate.cpp: watchdog failsafe.

G. Lifecycle Control

The Lifecycle class defines structured phases: calibrate,
wait, execute tasks, clean, reset. Each task implements an
execute() method. Retry logic ensures fault-tolerant exe-
cution. PID control is implemented using standard approaches.

V. CONCLUSION

This paper presented a modular visual programming system
for robotics development. Using Blockly and Next.js, students
can visually compose robot behaviors that generate efficient,
maintainable C++ code. The system’s backend is flexible,
extensible, and aligned with educational robotics challenges
such as Botball.

ACKNOWLEDGMENT

We thank the open-source developers behind Blockly,
Next.js, and related tools. Special acknowledgment goes to
the TGM faculty and Botball participants for feedback during
testing.

REFERENCES

[1] R. Kupisch, S. März, and S. Orlowski, “Review of google blockly
and its innovative use,” International Journal of Computer Science and
Engineering, vol. 8, no. 4, pp. 123–130, 2018.

[2] D. Zhang, J. Smith, A. Lee, and R. Patel, “The impact of robotics on stem
education: Facilitating cognitive and interdisciplinary advancements,”
International Journal of STEM Education, vol. 10, no. 2, pp. 1–15, 2023.

[3] C. Pimmer, M. Mateescu, and U. Gröhbiel, “A systematic review of
studies on educational robotics,” Journal of Peer Learning, vol. 9, no. 2,
pp. 32–54, 2020.

[4] J. Brender, M. Thémines, and P. Lucas, “Investigating the role of edu-
cational robotics in formal mathematics education: the case of geometry
for 15-year-old students,” arXiv preprint arXiv:2106.10925, 2021.

[5] O. Bau, J. Gray, C. Kelleher, J. Sheldon, and F. Turbak, “Learnable
programming: Blocks and beyond,” arXiv preprint arXiv:1705.09413,
2017.

[6] C. S. Cheah, “Factors contributing to the difficulties in teaching and
learning of computer programming: A literature review,” Contemporary
Educational Technology, vol. 12, no. 2, pp. 91–114, 2020.

[7] M. Karaca and U. Yayan, “Ros based visual programming tool for mobile
robot education and applications,” arXiv preprint arXiv:2011.13706,
2020.

[8] Wikipedia contributors. (2025) Median filter. Accessed: 2025-06-15.
[Online]. Available: https://en.wikipedia.org/wiki/Medianf ilter

[9] ——. (2025) Dijkstra’s algorithm. Accessed: 2025-06-15. [Online]. Available:


