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Abstract – This paper shows an approach on 

how to significantly improve the maneuvering 

reliability of a wallaby-controlled robot by 

using its internal gyroscope and various 

supporting algorithms. Stable movement is an 

extremely desirable feature of robots in Botball, 

because of the various obstacles present on the 

game table, as well as possible interference 

from the opponents, which can hit the robot and 

set it off-course. A robot equipped with an 

implementation of the gyroscope system can 

accomplish tasks such as turning accurately for 

90 degrees, driving in a straight line, and 

correcting its orientation after colliding with 

obstacles. 

1. Introduction

Robots are typically constructed with two 

motors on its base, each attached to two wheels, 

that administers its movement around the game 

table. The motors themselves are usually 

controlled by functions such as mav( ) and 

mrp( ), sometimes in conjunction with 

correction methods such as line following, wall-

bumping, etc. This setup is widely used because 

of its simplicity, but it has several drawbacks.

It is hard for the robot to move in a straight line,

even if the robot is oriented correctly at the 

start, and the two motors are set to the same 

velocity. This is because the two motors may 

have a very slight speed differential, and one 

wheel would spin faster than the other, causing 

the robot to deviate left or right. Normally, with 

some help from line-following and other 

correction procedures, this problem can be 

overcome, but sometimes it is necessary for a 

robot to enter an area that has no lines to follow,

in which the conventional methods of 

navigation would become too unreliable to use.

Accurate turning is also difficult to accomplish 

by using this simple system, and sometimes a 

significant deviation would appear if you 

execute many seemingly perfect 90 degrees 

turns in series. Using the mrp( ) function can 

slightly improve the situation, but the back-

EMF based tick counting system for the motors 



still suffers from precision issues, and its 

readings varies for different motors.

The presence of obstacles on the game table 

poses a further threat to the robots. Most of the 

time, a properly installed bumper can push away

dangers in the robot’s way, but sometimes, 

deformable objects, such as pom balls, can be 

squashed and slide under the bumper. The wheel

would slip if a pom goes beneath it, and this 

causes the robot to deviate off course. 

Interference from the opposing team can also 

similarly affect the robot’s movement. 

The problems mentioned above inspired the 

author of this paper to develop the gyroscope-

based inertial navigation system to improve the 

robot’s reliability and stability. 

2. Data Stabilization

Ideally, the readings from the gyroscope on all 

axis should be zero when the robot is static. 

However, this is rarely the case, because the 

gyroscope is affected by vibrations, ambient 

temperature, and various other uncontrollable 

environmental factors [1], which results in a 

reading that oscillates around -10 to +10. This 

raw reading cannot be used directly for 

integration because the integral would 

accumulate these false values and become 

unusable. In order to solve this, an integer 

conversion is used first to rectify the readings, 

and an average over 10 iterations is taken. This 

is demonstrated through the following code 

snippet:

3. Offset Parameters

The gyroscope’s reading is sometimes off by a 

constant amount [2], and its cause is similar to 

the reasons mentioned above. This constant 

offset would accumulate and cause the integral 

to grow over time even if the robot is static, and 

it would falsely predict that the robot rotated. To

solve this, an offset parameter is subtracted from

the average reading taken previously. This 

parameter can be adjusted manually, or it can be

calculated by taking the average of the 

gyroscope’s reading over 100 iterations. The 

following code snippet shows how the offset 

parameter is used in an integration step:



A different offset parameter is used for 

calculating the degrees turned when the robot 

rotates. In order to ease the programming 

process, we multiply the target angle by the 

offset, and compare this value to the one 

returned by the integral, as the integral uses an 

arbitrary unit that isn’t degrees. This way, 

instead of passing an arbitrary value into the 

function, we can now simply write rotate(90) to 

turn 90 degrees. The angle_f offset parameter is 

tuned manually by seeing if the robot can return 

to its original orientation by rotating 720 

degrees, using a series of rotate(90) calls. This 

process accumulates the small deviation in each 

rotation that would otherwise be unnoticeable. 

A third offset parameter is used to account for 

the reading difference returned by the gyroscope

for clockwise and counterclockwise rotations. 

This difference was discovered by accident 

when the author observed that a perfectly 

calibrated clockwise 90 degrees turn will always

result in a constant amount of excess rotation 

when -90 (anticlockwise turn) is passed to the 

rotation function. This negative offset is 

calibrated manually, with the same procedure 

(rotate 720 degrees and observe the deviation) 

that’s used previously.

The value of nrOffset is typically set to 0.99 

based on the author’s experience, but may need 

to be adjusted for different wallaby controllers. 

4. Fixed Time Step Integration

Integration is the central component in the 

gyroscope navigation system. To calculate 

displacement over a period of time, the 

following integral is used [3]:

This integral calculates the displacement in the 

time period from a to b, and it involves finding 

the antiderivative of the v(t) function. However, 

in practice, we can’t find the antiderivative of 



the gyro_x( ) function, so it is usually 

implemented as a finite sum to approximate the 

integral, with Δt being a finitely small value, 

typically 1 millisecond:

Of course, when implementing the above idea in

code, the velocity function (gyro_x) does not 

take a time parameter input; instead, it just 

reports the angular velocity reading at the 

moment. However, because the wallaby is 

running on Linux instead of an RTOS (real time 

operating system), every iteration of the loop 

isn’t guaranteed to have a fixed time step of 1 

millisecond, as the CPU has to spend time 

dealing with other tasks given to it by Linux [4].

The constantly changing elapsed time would 

add a lot of errors to the integral, which 

ultimately leads to an inaccurate estimation of 

the degrees turned by the robot. The following 

picture shows the deviation created when the 

robot executes eight 90 degrees rotations in 

series.

In order to enforce a fixed “frame rate” for the 

loop, a timer is incorporated into the code to 

calculate the elapsed time. 

The seconds( ) function provided by the wallaby

library only has a resolution of 0.001 seconds, 

and it will return a value of zero if less than 1 

millisecond has elapsed. This allows the integral

to only accumulate the value given by gyro_x 

once per millisecond, and give us a precise 

approximation of the degrees turned. The robot 

is able to return to its original position (parallel 

to the tape) after eight 90 degrees turns. 

5. PID Controller

Based on the angular deviation returned by the 

integral, the robot needs to adjust its two 

motor’s power to correct the change, and 

maintain a straight path. A simple system would 

adjust the motor speeds by a constant amount in 

order to correct the deviation. However, this 



method responses poorly when there’s a sudden 

large change in angle, and it will wobble rapidly

when the deviation is close to zero. The 

horizontal sway caused by the wobble can 

sometimes set the robot off course by as much 

as 5cm (with reference to the black tape).

To address this problem, a PID controller is 

used to adjust the motor speeds. The P controller

gives proportional output based on the current 

error. This controller provides stable operation, 

but never reaches the steady state (it oscillates 

above and below it). The I controller integrates 

the steady-state error over a period of time until 

the error reaches zero. This eliminates the 

wobble issue, but it needs time to react. The D 

controller finds the rate of change of the error 

with respect to time and it anticipates errors that

could occur in the future. With all three 

together, the PID controller can smoothly adjust 

the motor’s power based on the error. [5]

In this case, a PD controller, which is a special 

instance of the PID controller, is used to control 

the robot’s motors, because rapid response is 

needed in order for the robot to compensate 

large changes quickly, and the extra stability of 

the I controller is not needed. This is achieved 

by setting the I term to zero, so it is ignored. 

After adding the PID controller, the motor’s 

speed change is much smoother, and the issue of

wobbling and horizontal sway is eliminated. 

The robot managed to closely follow the black 

line while it referenced nothing but the gyro 

system.

6. Motor Braking

After the movement functions completes their 

jobs, the motors needs to stop. The conventional

method of setting the motor’s speed to 0 by 

using mav( ) will power down the motor, but the

robot will still slip forward slightly (for about 

0.5mm to 1cm) because of its momentum. 

Because the two wheels have different friction, 

this slipping action would cause the one wheel 



to move forward more than the other, effectively

rotating the robot slightly, which defeats the 

purpose of having a gyroscope based accurate 

turning system. The built-in freeze( ) function 

provided by the wallaby library doesn’t seem to 

do anything to brake the motors. In order to 

counter this, we would force the motor to turn in

the opposite direction for 10 milliseconds, then 

immediately shut it down. This provides a 

strong braking force that immediately sets the 

robot to a stop, and prevents any unwanted 

forward movement.

7. Conclusion

The gyroscope system is an invaluable piece of 

equipment that has made its way into many 

aspects of our life, such as in smart phones, 

watches, drones, and cars. In the case of the 

Botball competition, the gyroscope system, 

alongside its various supporting algorithms, 

provides a robust and reliable way of navigating

robots. It is resistant to deterrences such as 

obstacles and accidental collisions, and it 

eliminates problems created by wheel slipping 

or motor speed differential. Utilizing the 

gyroscope can open up a plethora of new 

possibilities in terms of robot design, 

programming, and game strategies for Botball 

participants.
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