
Utilizing the Internal Gyroscope for Reliable Inertial Navigation

Yusen Hu

Dulwich College Beijing

Utilizing the Internal Gyroscope for

Reliable Inertial Navigation

Abstract – This paper shows an approach on

how to significantly improve the maneuvering

reliability of a wallaby-controlled robot by

using its internal gyroscope and various

supporting algorithms. Stable movement is an

extremely desirable feature of robots in Botball,

because of the various obstacles present on the

game table, as well as possible interference

from the opponents, which can hit the robot and

set it off-course. A robot equipped with an

implementation of the gyroscope system can

accomplish tasks such as turning accurately for

90 degrees, driving in a straight line, and

correcting its orientation after colliding with

obstacles.

1. Introduction

Robots are typically constructed with two

motors on its base, each attached to two wheels,

that administers its movement around the game

table. The motors themselves are usually

controlled by functions such as mav() and

mrp(), sometimes in conjunction with

correction methods such as line following, wall-

bumping, etc. This setup is widely used because

of its simplicity, but it has several drawbacks.

It is hard for the robot to move in a straight line,

even if the robot is oriented correctly at the

start, and the two motors are set to the same

velocity. This is because the two motors may

have a very slight speed differential, and one

wheel would spin faster than the other, causing

the robot to deviate left or right. Normally, with

some help from line-following and other

correction procedures, this problem can be

overcome, but sometimes it is necessary for a

robot to enter an area that has no lines to follow,

in which the conventional methods of

navigation would become too unreliable to use.

Accurate turning is also difficult to accomplish

by using this simple system, and sometimes a

significant deviation would appear if you

execute many seemingly perfect 90 degrees

turns in series. Using the mrp() function can

slightly improve the situation, but the back-

EMF based tick counting system for the motors

still suffers from precision issues, and its

readings varies for different motors.

The presence of obstacles on the game table

poses a further threat to the robots. Most of the

time, a properly installed bumper can push away

dangers in the robot’s way, but sometimes,

deformable objects, such as pom balls, can be

squashed and slide under the bumper. The wheel

would slip if a pom goes beneath it, and this

causes the robot to deviate off course.

Interference from the opposing team can also

similarly affect the robot’s movement.

The problems mentioned above inspired the

author of this paper to develop the gyroscope-

based inertial navigation system to improve the

robot’s reliability and stability.

2. Data Stabilization

Ideally, the readings from the gyroscope on all

axis should be zero when the robot is static.

However, this is rarely the case, because the

gyroscope is affected by vibrations, ambient

temperature, and various other uncontrollable

environmental factors [1], which results in a

reading that oscillates around -10 to +10. This

raw reading cannot be used directly for

integration because the integral would

accumulate these false values and become

unusable. In order to solve this, an integer

conversion is used first to rectify the readings,

and an average over 10 iterations is taken. This

is demonstrated through the following code

snippet:

3. Offset Parameters

The gyroscope’s reading is sometimes off by a

constant amount [2], and its cause is similar to

the reasons mentioned above. This constant

offset would accumulate and cause the integral

to grow over time even if the robot is static, and

it would falsely predict that the robot rotated. To

solve this, an offset parameter is subtracted from

the average reading taken previously. This

parameter can be adjusted manually, or it can be

calculated by taking the average of the

gyroscope’s reading over 100 iterations. The

following code snippet shows how the offset

parameter is used in an integration step:

A different offset parameter is used for

calculating the degrees turned when the robot

rotates. In order to ease the programming

process, we multiply the target angle by the

offset, and compare this value to the one

returned by the integral, as the integral uses an

arbitrary unit that isn’t degrees. This way,

instead of passing an arbitrary value into the

function, we can now simply write rotate(90) to

turn 90 degrees. The angle_f offset parameter is

tuned manually by seeing if the robot can return

to its original orientation by rotating 720

degrees, using a series of rotate(90) calls. This

process accumulates the small deviation in each

rotation that would otherwise be unnoticeable.

A third offset parameter is used to account for

the reading difference returned by the gyroscope

for clockwise and counterclockwise rotations.

This difference was discovered by accident

when the author observed that a perfectly

calibrated clockwise 90 degrees turn will always

result in a constant amount of excess rotation

when -90 (anticlockwise turn) is passed to the

rotation function. This negative offset is

calibrated manually, with the same procedure

(rotate 720 degrees and observe the deviation)

that’s used previously.

The value of nrOffset is typically set to 0.99

based on the author’s experience, but may need

to be adjusted for different wallaby controllers.

4. Fixed Time Step Integration

Integration is the central component in the

gyroscope navigation system. To calculate

displacement over a period of time, the

following integral is used [3]:

This integral calculates the displacement in the

time period from a to b, and it involves finding

the antiderivative of the v(t) function. However,

in practice, we can’t find the antiderivative of

the gyro_x() function, so it is usually

implemented as a finite sum to approximate the

integral, with Δt being a finitely small value,

typically 1 millisecond:

Of course, when implementing the above idea in

code, the velocity function (gyro_x) does not

take a time parameter input; instead, it just

reports the angular velocity reading at the

moment. However, because the wallaby is

running on Linux instead of an RTOS (real time

operating system), every iteration of the loop

isn’t guaranteed to have a fixed time step of 1

millisecond, as the CPU has to spend time

dealing with other tasks given to it by Linux [4].

The constantly changing elapsed time would

add a lot of errors to the integral, which

ultimately leads to an inaccurate estimation of

the degrees turned by the robot. The following

picture shows the deviation created when the

robot executes eight 90 degrees rotations in

series.

In order to enforce a fixed “frame rate” for the

loop, a timer is incorporated into the code to

calculate the elapsed time.

The seconds() function provided by the wallaby

library only has a resolution of 0.001 seconds,

and it will return a value of zero if less than 1

millisecond has elapsed. This allows the integral

to only accumulate the value given by gyro_x

once per millisecond, and give us a precise

approximation of the degrees turned. The robot

is able to return to its original position (parallel

to the tape) after eight 90 degrees turns.

5. PID Controller

Based on the angular deviation returned by the

integral, the robot needs to adjust its two

motor’s power to correct the change, and

maintain a straight path. A simple system would

adjust the motor speeds by a constant amount in

order to correct the deviation. However, this

method responses poorly when there’s a sudden

large change in angle, and it will wobble rapidly

when the deviation is close to zero. The

horizontal sway caused by the wobble can

sometimes set the robot off course by as much

as 5cm (with reference to the black tape).

To address this problem, a PID controller is

used to adjust the motor speeds. The P controller

gives proportional output based on the current

error. This controller provides stable operation,

but never reaches the steady state (it oscillates

above and below it). The I controller integrates

the steady-state error over a period of time until

the error reaches zero. This eliminates the

wobble issue, but it needs time to react. The D

controller finds the rate of change of the error

with respect to time and it anticipates errors that

could occur in the future. With all three

together, the PID controller can smoothly adjust

the motor’s power based on the error. [5]

In this case, a PD controller, which is a special

instance of the PID controller, is used to control

the robot’s motors, because rapid response is

needed in order for the robot to compensate

large changes quickly, and the extra stability of

the I controller is not needed. This is achieved

by setting the I term to zero, so it is ignored.

After adding the PID controller, the motor’s

speed change is much smoother, and the issue of

wobbling and horizontal sway is eliminated.

The robot managed to closely follow the black

line while it referenced nothing but the gyro

system.

6. Motor Braking

After the movement functions completes their

jobs, the motors needs to stop. The conventional

method of setting the motor’s speed to 0 by

using mav() will power down the motor, but the

robot will still slip forward slightly (for about

0.5mm to 1cm) because of its momentum.

Because the two wheels have different friction,

this slipping action would cause the one wheel

to move forward more than the other, effectively

rotating the robot slightly, which defeats the

purpose of having a gyroscope based accurate

turning system. The built-in freeze() function

provided by the wallaby library doesn’t seem to

do anything to brake the motors. In order to

counter this, we would force the motor to turn in

the opposite direction for 10 milliseconds, then

immediately shut it down. This provides a

strong braking force that immediately sets the

robot to a stop, and prevents any unwanted

forward movement.

7. Conclusion

The gyroscope system is an invaluable piece of

equipment that has made its way into many

aspects of our life, such as in smart phones,

watches, drones, and cars. In the case of the

Botball competition, the gyroscope system,

alongside its various supporting algorithms,

provides a robust and reliable way of navigating

robots. It is resistant to deterrences such as

obstacles and accidental collisions, and it

eliminates problems created by wheel slipping

or motor speed differential. Utilizing the

gyroscope can open up a plethora of new

possibilities in terms of robot design,

programming, and game strategies for Botball

participants.

References

[1] Weinberg, Harvey. “Gyro Mechanical Performance:
The Most Important Parameter.” Gyro Mechanical
Performance: The Most Important Parameter | Analog
Devices, Analog Devices, www.analog.com/en/technical-
articles/gyro-mechanical-performance.html.

[2] Beavers, Ian. “The Case of the Misguided Gyro.” The
Case of the Misguided Gyro | Analog Devices, Analog
Devices, Oct. 2016, www.analog.com/en/analog-
dialogue/raqs/raq-issue-139.html.

[3] Ling, Samuel J., et al. “3.6: Finding Velocity and
Displacement from Acceleration.” Physics LibreTexts,
Libretexts, 14 June 2019,
phys.libretexts.org/Bookshelves/University_Physics/Book
%3A_University_Physics_(OpenStax)/Map
%3A_University_Physics_I_-_Mechanics%2C_Sound
%2C_Oscillations
%2C_and_Waves_(OpenStax)/3%3A_Motion_Along_a_
Straight_Line/3.6%3A_Finding_Velocity_and_Displacem
ent_from_Acceleration.

[4] “What Is a Real-Time Operating System (RTOS)?”
What Is a Real-Time Operating System (RTOS)? -
National Instruments, National Instruments, 24 May
2019, www.ni.com/en-us/innovations/white-
papers/07/what-is-a-real-time-operating-system--
rtos--.html.

[5] “How Does a PID Controller Work? - Structure &
Tuning Methods.” ElProCus, 10 Nov. 2018,
www.elprocus.com/the-working-of-a-pid-controller/.

