
Game Strategy: Optimizing Strategy Using the Binary Knapsack Algorithm
Tommy Yang
Menlo School

Game Strategy: Optimizing Strategy Using the Binary Knapsack Algorithm

1. Abstract
Score maximization is critical to a team’s performance during competition and is thus one of the
most important elements of overall Botball game strategy. The design of an optimal task list that
maximizes combined task score while still remaining within the time limit is central to Botball
scoring strategy. This paper presents an overview of the knapsack problem, its common
variations, and real-world applications. In addition, it presents a research model that uses the
binary knapsack algorithm to produce an optimal task list to score the most points based on the
2017 regional Botball scoring rubric. The paper concludes that the use of the knapsack algorithm
to decide tasks performed is highly beneficial in improving a robot’s maximum theoretical score.

2. Introduction

In Botball, a team’s seeding rank is based on the team’s two highest seeding scores. Therefore,
teams must take time to optimize the tasks their robots complete in order to maximize their point
potential.

However, the reality is that most Botball teams, including ours, lack a systematic approach to
their scoring strategies. Teams select their task lists through estimation using past experience, gut
feel, and trial-and-error. These methods have lead to teams operating in the blind, not knowing if
their implementations are optimal.

The goal of the study is to effectively select a subset of game tasks with a fixed time constraint
(2 minutes) so that the sum of the scores of selected tasks is maximized.

The Botball score maximization problem falls in the area of combinatorial optimization, which
aims to find the optimal combination of objects from a finite set of objects. There are many
mathematical algorithms that can be leveraged for score maximization within the realm of
combinatorial optimization. The algorithmic solution to the knapsack problem is one of the most
classic and powerful algorithms that can solve this problem; thus, it is the focus of this paper. 1

2.1 What is the Knapsack Problem?

As a well-known problem in combinatorial optimization, the knapsack problem derives its name
from the following ancient story:

A long time ago, a thief broke into a vault chock full of valuable items. However, he only
brought one knapsack with him and must fill it with the most valuable items without
breaking it. The vault has n items, where item ​i​ weighs ​s​i​ pounds, and can be sold for ​v​i

1 Skiena, S. September 1999. Who is Interested in Algorithms and Why? Lessons from the Stony Brook
Algorithm Repository. AGM SIGACT News. 30 (3): 65–74. doi:10.1145/333623.333627.

dollars. The thief must choose which items to take in his knapsack so that he makes as
much money as possible after selling the items.

Example of a one-dimensional (constraint) knapsack problem: Which boxes should be
chosen to maximize the amount of money while still keeping the overall weight under or
equal to 15 kg? (​Illustration of the knapsack problem​ by Duke / ​CC BY-SA 2.5​).

With works dating as early as 1897, the knapsack problem has been studied by mathematicians
for over a century. ​The original knapsack problem can be rewritten as follows: 2

Given a finite set of items which have a weight and a value, choose the subset of all items
such that the total weight is less than or equal to the maximum weight the knapsack can
hold and the total value is maximized. 3

2.2 Knapsack Problem Variations and the Binary Knapsack Algorithm

There are a few variations of the knapsack problems, such as multi-objective knapsack problems,
multidimensional knapsack problems, multiple knapsack problems, quadratic knapsack
problems, and subset-sum problems. In the real-world, t​he most common problem is the 0-1
knapsack problem, also known as the ​binary knapsack problem, ​because in most practical use
cases, a binary “yes” or “no” decision must be made regarding a task. In the story of the thief in
the ​vault​, ​the thief must decide to either take an item or leave it behind as the items are assumed
to be indivisible. Thus, the story is an example of a binary knapsack problem.

2 ​Mathews G. B. June 1897. On the partition of numbers.​ ​Proceedings of the London Mathematical
Society.​ ​28: 486–490.​ ​doi​:​10.1112/plms/s1-28.1.486​.​

3 Cormen T, Leiserson C, Rivest R, Stein C. 2009. Introduction to Algorithms. 3rd edition. Cambridge

(MA): MIT Press. Section 16.2: The 0-1 Knapsack problem, p.425-428.

https://commons.wikimedia.org/wiki/File:Knapsack.svg
https://doi.org/10.1112%2Fplms%2Fs1-28.1.486
https://en.wikipedia.org/wiki/Digital_object_identifier
https://creativecommons.org/licenses/by-sa/2.5/deed.en

The National Institute of Standards and Technology (NIST) formally defines the binary knapsack
problem as follows.

“There is a knapsack of capacity c > 0 and N items. Each item has value v​i​ > 0 and
weight w​i​ > 0. Find the selection of items (δ​i​ = 1 if selected, 0 if not) that fit,
∑​i=1​

N​ δ​i​w​i​ ≤ c, and the total value, ∑​i=1​
N​ δ​i​v​i​, is maximized.”

The simplest solution to the binary knapsack problem is to simply try out every case. Every
object can be either included or not included, which leads to a O(2​N​) runtime. While we do not
really care about speed and our N is relatively small, it would be interesting to look at a solution
that is more time efficient, since this implementation recalculates some values multiple times and
looks at impossible cases when the total time exceeds the time limit. We can use dynamic
programming to create a more efficient algorithm, which results in a O(c*N) runtime.
2.3 Knapsack Algorithm’s Applications

According to a study by Stony Brook University, the knapsack problem ranked as the 18​th​ most
popular and the 4​th​ most needed ​out of 75 algorithmic problems. It is not surprising that the 4

knapsack algorithms are ​widely used in a variety of real-world applications. Here are some
interesting applications of the knapsack algorithms:

● In manufacturing, it is used to find the least wasteful way to cut raw materials
● In investment banking, it is used to optimally select stocks for maximum portfolio returns
● In cryptography, it is used to generate keys for ​Merkle–Hellman knapsack public key

cryptosystems 5

● In computing, it is used by a server to pack optimal chunks of data in one go during a
software download to fully utilize the size limit

● In space travel, it is used to ​maximize the values of goods that a spaceship carries.

3. Binary Knapsack Algorithm’s Application in Botball Scoring

The knapsack algorithm can also be used by Botball teams to formulate the optimal scoring
strategy. Each task can be associated with a score and the time it takes to complete the task. Here
is how to apply the binary knapsack algorithm to Botball:

● Task completion time replaces item weight
● The time limit of 2 minutes replaces knapsack weight limit
● Task score replaces item value

The goal of using the knapsack algorithm in Botball is to figure out how to achieve high scores
by carefully choosing a set of tasks that fit within the game’s time limit.

4 Skiena, S. September 1999. Who is Interested in Algorithms and Why? Lessons from the Stony Brook
Algorithm Repository. AGM SIGACT News. 30 (3): 65–74. doi:10.1145/333623.333627.

5 ​ ​Merkle R, Hellman M. 1978. Hiding information and signatures in trapdoor knapsacks.​ ​Information

Theory, IEEE Transactions on. 24​ ​(5): 525–530.​ ​doi​:​10.1109/TIT.1978.1055927​.

https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1109%2FTIT.1978.1055927

3.1 Research Mythology

At the start of this project, I determined that score maximization was a critical part of game
strategy and that it was best to develop the optimal task list before designing the robot. Although
there were other considerations in the Botball game that contribute to scoring, it was best to
ignore them during the abstraction process to simplify the research model. Thus, I developed the
following research model to generalize Botball score maximization:

● A starting point
● A destination
● One robot is used to conduct the tasks
● Task completion time is estimated
● Only the highest scoring task in a category is considered to simplify the model
● Task sequence and travel time/shortest route are ignored in this study, but its effect

can be further studied
● The two robot use case is ignored in this study, but its effect can be further studied
● Point values from the regional competitions will be used

Based on the above research model, I designed a project that uses the binary knapsack algorithm
to accomplish the optimal set of tasks that results in the maximum possible score. In future
studies, I can adjust the solution by overlaying other considerations or adding other constraints to
satisfy ignored conditions.

3.2 Research Model Implementation

Based on the above research model, I implemented the project through the following steps:

Step 1: Compile the complete list of all tasks associated with a score

The following list is a simplified list of all tasks associated with a score:

Task Point value Time (seconds)
Robot on terrace 25 20
Botguy and 2 cows on terrace 300 90
2 water containers in upper planter 120 80
Pink poms in upper planter (12 poms) 120 40
Orange poms in upper planter (12 poms) 120 60
Blue poms in upper planter (12 poms) 120 80
Green poms in upper planter (12 poms) 120 60
Sorted poms (3 furrows, 4 colors, 12 poms per furrow) 1440 200
Stacked hay in barn (7 high) 490 110

Step 2. Apply the binary knapsack algorithm using the following Python code

Step 3. Read the output

The code outputs 490, which means stacking 7 hay bales in the barn will give the optimal score
for one robot.

3.3 When to Use the Binary Knapsack Algorithm in the Botball Season

In Botball, the determination of target robot tasks dictates critical requirements for robot design,
task sequencing, and route planning. Therefore, it is best to develop the targeted optimal task list
using the knapsack algorithm at the beginning of the season before the start of robot design, task
sequencing, and route planning. This sequencing order ensures the requirements for the robot
design and route planning are captured and analyzed upfront by the team. This way, the team can
avoid major in-season design changes, reduce the number of iterations, and maximize the
operational efficiency of a team while achieving the best possible score for the season.

4. Conclusion

This study introduces knapsack problems, algorithms, and applications in the context of Botball
game strategy. The binary knapsack algorithm has been successfully applied to a single robot
Botball scoring model to maximize task combined scores. Through this study, students learn how
the binary​ knapsack can be ​applied to achieve the highest potential score. In addition, for
operational efficiency, it is important to note that a team should conduct the score maximization
planning phase before robot design, task sequence, and route planning phases. Furthermore, this
project demonstrates that it is necessary to learn and utilize proven combinatorial optimization
algorithms and use them in competition to improve game results.

