

S2 robot and a GUI - A possible approach to teach text-based programming to
middle or high school students
Olivia Nche-Eyabi and Sekou L Remy
Clemson University
oncheey@clemson.edu, sremy@clemson.edu

S2 robot and a GUI - A possible approach to teach text-based programming to
middle or high school students

1 Introduction
Some middle and high school students are already familiar with a certain level of
programming using graphical user interfaces (GUI). However, in college or in the
industry, programmers have to learn text-based programming. In this research, we
propose and investigate a possible approach to introduce text-based programming to
middle or high school students in order to give them a head start for college. GUIs alone
are good introductory tools but will not suffice to teach text-based programming.
Robotics programs are also quickly becoming commonplace in high schools due in part
to the fact that learning with robots has the ability to provide rapid feedback and hands-
on learning. As such, educational robots offer an exciting way [4, 11, 12] to address
many challenging concepts which typically discourage or hinder students’ interests in
Science, Technology, Engineering, and Mathematics (STEM) [2, 7, 11]. We can harness
the excitement, the interdisciplinary and pro-active nature of robots to teach text-based
programming to middle or high school students. In this study, we combined a robot and a
GUI to investigate a possible approach to teach text-based programming to high school
students. We found that an approach, which used robotics programming as a channel,
GUI as an introductory tool and reverse engineering/scaffolding to facilitate a transition
to text-based programming, yielded the best results in the post-test for high school
students.
2 Reverse Engineering/Scaffolding
Reverse engineering facilitates the modeling of a system by taking apart the current
model and examining it to understand its distinctive components [18]. This can be done
in small modules to simplify the process. Whereas, scaffolding requires one to break up
the learning into chunks and provide a learning structure, for each chunk [17]. In our
research, we used reverse engineering to examine the program created on the GUI in
order to understand its distinct modules so that we could reproduce them on the Java IDE.
We did so by breaking apart the code in small modules and analyzing each module
carefully in the light of both Java and the GUI. We then employed scaffolding to rebuild
the code on a Java IDE, working with the small chunks at a time. For each program
chunk, we wrote a simple program in Java that implemented the same concepts learnt
from the GUI project. However, in the latter case, it was structured to accomplish a
different task. For example, the GUI pizza project involved loops and control statements
amongst others. During the reverse engineering phase, we re-examined these concepts
independently and then explained how they could be implemented in Java.
The pizza project required the S2 to draw a circle as one of its modules. This was
accomplished by programming the S2 to draw an arc and then placing that piece of code

in a loop whose counter was set to three. Thus, this segment of the program dealt
specifically with a loop. We isolated this portion in our reverse engineering/scaffolding
transition phase and analyzed the unique features presented here. We then discussed these
features in the Java context and proceeded to write a program that would loop through a
list of numbers and sort out the prime numbers in the list. So the concept of loops was
transferred to Java from the GUI and implemented in a different scenario. This process
was reversed when we transitioned from the Java IDE to the GUI. In essence, reverse
engineering allowed us to examine the GUI program with the purpose of rebuilding a
similar model in Java, while the process of scaffolding facilitated the creation of this new
model a little chunk at a time.

3 Programming Challenges
Programming is a very important and inevitable component of computing and robotics
because it creates the code that instructs the robot to execute a series of actions [10].
However, traditional text-based programming has several challenges [13], which can
render the learning process an agonizing one for the novice programmer. The process of
programming requires the programmer to have declarative and procedural knowledge of
the syntax of a language. The programmer should also possess the ability to memorize,
understand, solve problems, deal with abstraction and think logically [5, 13, 16].
Furthermore, a programmer should not only possess problem-solving skills and
knowledge of the programming tools of a language but should also have effective
strategies for designing and implementing the program [1, 5, 16]. With the traditional
approach in programming education, the students are first taught the basics of a
programming language and then guided towards effective strategies for the whole
programming process. The main source of difficulty here is not necessarily the syntax or
understanding of concepts, but rather basic program planning. There is a difference
between programming knowledge and programming strategies. Understanding a
programming concept is one thing and being able to use it appropriately in a program is
another [1]. Typically, a student can possess the former but will still struggle to execute
the later. This implies that students may know the syntax and semantics of individual
statements, but might have trouble combining these features into useable programs. Even
when they know how to solve the current problem, they have trouble translating it into an
equivalent computer program [1].
Deek et al. developed a problem-solving approach, which handles this problem and helps
students to learn both concept knowledge and strategies for using them at the same time.
In their approach, language features were introduced to students only in the context of
specific problems. This was done in little bits at a time so as not to overwhelm the
students. They found that this method was able to improve the performance of the
students in their course work and boosted their overall programming confidence [1, 9].
We apply this concept in formulating an approach that will address some of the
difficulties associated with programming for the young learner such that the struggles do
not become a deterrent to some of them who would otherwise be interested in computing.
Our method facilitates the learning of programming concepts and their application within
the context of a particular problem simultaneously. A successful approach could
potentially encourage more students to pursue computer science in college. Furthermore,
when they get to college, programming will no longer be a new idea but a repetition to

some extent, of concepts that they have already interacted with [16]. This will further
increase the percentage of students who will be retained for graduation [13]. There is also
a shifting trend from the visual programming approach to a text-based approach.
Microsoft’s preference for a code first approach in Entity Framework, an object-relational
mapping tool, is evidence to this changing pattern [19].
4 The S2 Scribbler Robot
We used the Scribbler 2 (S2) robot shown in Figure 1 for this research. The S2 is a robot,
which is capable of drawing different shapes, letters, numbers and pictures, as it drives.
It has a pen port to enable this activity. The pen port can hold a Sharpie or any similar
marker [14, 15]. The S2 can be programmed by changing the Propeller source code in the
S2 BASIC-like Spin language to suit a desired purpose or by using the Graphical User
Interface (S2 GUI) tile-based programming tools.

Figure 1. S2 robot drawing a shape Figure 2. Scribbler 2 robot GUI

The S2 GUI in Figure 2 is a graphical drag-and-drop interface, which is a good platform
to introduce students to programming [14, 21].
5 Previous Research
Some research has been done in this area and our intention is to add to the knowledge
base, which has been created by previous works. Weintrop et al investigated how high
School students perceived blocks-based programming. They conducted a 10-week
experiment that allowed the students to experience and use different blocks-based
environments. They used cognitive interviews and surveys to gauge the perceptions of
the students. Their findings show that students generally perceived blocks-based
programming to be easier than the text-based alternative. The natural language labels on
the blocks, the shapes and colors of the blocks, the drag-and-drop composition
mechanism, and the ease of browsing the blocks library were some of the reasons cited
for this perceived ease of use. Students also identified drawbacks to the blocks-based
programming approach including issues of authenticity, lack of expressive power, and
challenges in authoring larger, more sophisticated programs. They also found that the
differences high school students see between blocks-based and text-based programming
span the visual interface, the types of programs that can be authored, as well a different
programming practices that each representation supports [21].

The difference between their work and ours is that they sought to investigate if students
thought blocks-based programming was easier than text-based programming and what
they perceive as the differences between blocks-based and text-based programming.
Although the authors were able to show that students perceive blocks-based
programming to be easier than text-based programming and that it is a good introductory
tool, no quantitative assessment was done to support this.
We take the study a step further to show that while blocks-based programming is a good
introductory and easy to use tool, it does not exclusively prepare the students for text-
based programming in college and industry. We perform a quantitative study, which
shows that mastery of GUI based programming does not necessarily translate to an
understanding of text-based programming.
Wang, X. et al [20] describe another approach, which involves using the Scratch GUI as
an auxiliary to a textbook. The students are initially allowed to try out a project on the
Scratch GUI and then the concepts involved in this project are later explained to them. In
this approach, the authors propose that a teacher should start off by using a pre-existing
example of a project on the Scratch GUI to teach the students how to design a project.
After this process, the students should then be encouraged to design their own projects
from their daily life experiences. Then the teacher should transfer to a textbook example
with the traditional text-based code. He should then combine the textbook material with
the scratch project to elucidate on the key programming concepts involved.
The authors carried out no experiment to substantiate their theory. The work was
intended in part to provide a certain reference for similar research in teaching
programming to high school students. This paper typically builds a teaching mode with
Scratch for teaching programming to high school students.
In our case, we performed an experiment whose results show that Introducing
programming with a GUI and then transitioning to text-based programming can improve
students’ performance.
6 Method
6.1 Target Sample
The target sample was middle and high school students. The experiment was conducting
with students from the Anderson Christian School, which is a private school. The
students who participated in this study were students from the 6th, 8th and 10th grades.
There were about 47 participants who had no prior experience in programming. They
were almost evenly distributed across gender lines and their ages ranged from 10 – 14
years.
6.2 Pre- and Post-tests
At the beginning of the experiment, the students were given a pre-test, comprising of
questions in Java. This test included questions to test their knowledge of concepts like
variables, control statements, loops, and operators, to name a few. At the end of the
learning period, the same quiz was administered as the post-test. The posttest was
intended to capture the knowledge gained through the teaching process.
6.3 Experimental Procedure
The school authorities allowed us to come in during the Computer Science class time
which was typically used to teach the students Microsoft Office. Their rational for this

was that our research would serve as an enrichment activity for the students. The CS class
held at different time slots on different days and so we met each grade independently. For
five weeks, we worked with these students, testing different approaches to teach text-
based programming. We divided the students into four groups. For each grade, we
divided the class into two groups (A and B), on the first day of the experiment. We
randomly selected participants by letting them draw either letters A or B from a basket.
For the 6th and 8th graders, those in group A constituted the GUI only group (group1).
Those in group B became the participants in the text-based only group (group 2). In the
high school class, group A participants were placed in the GUI before text-based group
(group 3) while group B students were retained in the text-based before GUI treatment
group (group 4). The high school students alone made up about half of the participants.
So setting up the experiment this way allowed each of the experimental groups to have
about the same number of students.
The students in group 1 (GUI only) were taught how to program using the S2 GUI only.
At the beginning of the process, we taught the students how to use the S2 GUI and then
proceeded to teach them how to program the robot to draw different shapes. In this phase,
the students were taught how to draw simple shapes like squares, octagons, hexagons etc.
Moving on from here, we showed them how to combine three or more of the same shapes
to generate a different artifact like the one seen in Figure 1. In other cases, we paired
different shapes to form a new one. An example of this was the house, which was created
by programming the S2 to draw a combination of a triangle, a rectangle and a square in
the shape of a house. We worked on several small projects over the five-week period and
when we felt that the students were ready to do their own projects independently, we
encouraged them to do so. We guided the students through a brainstorming phase to
decide which project they would like to work on and formulated the steps that they would
need to execute their projects. Then they went on to program the S2 to draw the shapes
which they had conceived. After this exercise was completed, we engaged them in a final
project. This project included several concepts of programming like algorithms, loops
and control statements. In this final project, The S2 was programmed to draw a pizza, cut
it up into 8 slices and then follow a path to deliver it to a home [14].

The second group of students (traditional text-based only) was taught text-based
programming in Java, using the traditional method only. In their case we also worked on
projects, which encompassed the same concepts that the GUI only group projects covered
except that these were done in Java. With this group, we started off by introducing the
Java language to them and providing an explanation of a Java IDE. In this case we used
the NetBeans platform. Our next step was to download a Java IDK/IDE bundle. Once we
had everything set up, we gradually introduced key concepts to them like variables,
loops, control statements etc. We proceeded to teach each concept in further depth and
worked on practical examples, which incorporated these concepts. So throughout the
duration of the experiment, we taught this group how to program, using only the
traditional text-based method.

For the third group (GUI before text-based), we used the S2 GUI as an introductory tool
to teach the students programming just like we did with the first group. So we started off
by teaching them how to program the S2 to draw simple shapes and then progressed to

more complicated ones. After this, we worked on the pizza final project. Then we
transitioned them to text-based coding, working backwards from the GUI project to text-
based coding in Java. At this point, we employed the process of reverse
engineering/scaffolding to facilitate the transition from GUI to text-based coding in Java.
We took the GUI code apart and re-examined it carefully in the context of Java so as to
rebuild something similar to it. Then we employed scaffolding to rebuild a similar code
in Java. The point was not necessarily to reproduce the exact GUI program but to
reproduce something similar, which explained the same concepts that were presented
formally in the GUI. Prior to this though, we had given them an overview of Java. We
then delved into the Core Java concepts, which were introduced in the S2 GUI
programming context. We showed them how to write a code in Java, which incorporated
the same ideas as those in the GUI projects. Some of these concepts included variables,
control statements and loops. While we did this, we continued to make references to how
these concepts applied to the GUI example that they had already seen before.

The fourth group (text-based before GUI) started off by learning text-based coding in
Java directly, using the traditional method like the second group did. In this case, we also
gave them an overview of the Java language, and then introduced some key concepts.
Then we proceeded to teach them how to write simple programs. For the first half of the
five weeks of the experiment, this group was administered the same treatment as group 2.
During the second half, we transitioned them to the S2 GUI using our reverse
engineering/scaffolding method.

Group Pre-Test
Ave. Score %

Post-Test
Ave. Score %

GUI only 40.4 46.9
Text-based only 45.4 51.4

GUI first before Text-based 66.4 84.9
Text-based first before GUI 66.4 69.0

Table 1: Results from pre- and post-test

In the GUI phase, they received the same treatment as group 1. The difference between
groups 3 and 4 was that the students in group 4 moved from the Java IDE to the S2 GUI,
a reverse of what happened in group 3.

7 Results
As the figures in Table 1 show, we found that group 1 students, who learnt programming,
using the GUI only performed very poorly in the post-test. Those who were taught how to
program in Java, using only the traditional approach (group 2), performed a little bit
better than the “GUI only” group. We also found that the students in group three who
were taught programming with the GUI as an introductory tool before transitioning to the
traditional text-based method, had a better performance in the post-test than group 4
students, who were taught text-based programming using the traditional method first

before transitioning to the GUI.
M=84.9, 95% CI [79.0, 90.7]

8 Discussion
Our quantitative study supports the idea that blocks based programming has limitations.
The suggestion that it is inauthentic compared to conventional text-based programming is
an indicator that it is insufficient in itself to impute text-based knowledge to students
[23]. In our GUI only group, participants spent the entire five-week period working on
several projects on the S2 GUI exclusively. At the end of this period, we see that their
performance in a text-based test was quite low. This affirms the notion that an
understanding GUI programming does not necessarily translate to an understanding of
text-based programming. So while GUI based programming serves well as an
introductory tool, it does not in itself prepare the students for text-based programming.
Our approach was to introduce the students to programming using the S2 GUI and then
transition them to text-based programing in the context of specific problems. The
problem in the GUI case was to program the S2 to draw different shapes. In Java, we did
not program a robot to draw shapes (in this research), although this could be a valid
option. On the contrary we applied the same concepts learnt from the GUI projects to
Java programs, to accomplish different tasks and solve different problems. Some
examples included writing a program in Java that would accept information for a class
directory and print out any data that was requested. Another one was a simulation of the
ATM machine.

It is worth noting that there is a grade difference between the participants in this study,
which could account for the wide disparity in the pre-test results. Although middle and
high school students participated in the study, the approach we suggest in this research
was tested only with high school students in this first part of our research. The first two
groups were 6th and 8th graders and the 3rd and 4th groups were high school students. That
is why the results of the last two groups are considerable higher in both tests. Maybe this
could be an indication that age plays a role in how easily students are able to grasp
programming concepts. All of these students had no prior programming experience.

9 Limitations and Future Works
The GUI before text-based method, which we propose in this research was tested
amongst high school students in contrast to the text-based before GUI approach. We did
not test this approach with middle school students. The logistical set up in the school did
not permit us to have a blended class of both middle and high school students. It will be
interesting to carry out this experiment in a different scenario where each group could
have a mixed multitude of students from middle and high school. In the future, we could
also test this method amongst middle school students exclusively to see how they
perform. A further extension of this study would be to perform this entire experiment
with only high school students. In that case we would test all four approaches on high
school students and see how they perform in each treatment level. Right now we know
that in two treatment levels (GUI before text-based and Text-based before GUI) they
score high in the former.

10 Conclusion
We found that students who were taught programming using the S2 GUI as an
introductory tool before transitioning to Java, using reverse engineering/scaffolding,
performed better in their post-test than the students in the reverse approach. This leads us
to conclude that the approach, which uses robotics programming as a channel, GUI as an
introductory tool, and reverse engineering/scaffolding to facilitate a transition to text-
based programming can improve students’ performance in text-based programming. The
programming experience both with the GUI and text-based required the students to apply
problem solving techniques, algorithmic and computational skills. They had to find
suitable solutions to the problems and establish logical algorithms for the projects. This
programming experience therefore also served to hone these important skills in the
students [14], helping to prepare them for college or industry. The process of testing and
debugging the code in both scenarios also helped to foster problem solving and
assessment skills. We hope that our research will encourage computer science training in
general and text-based programming in particular in middle and high schools. This could
possibly translate to a higher rate of enrollment and retention of computer science
students in college.
11 Acknowledgments
We thank the Upper School Principal of Anderson Christian School, Mrs. Chris Maddox
for allowing us to work with the students of this institution. We would also like to thank
Mr. Harrison Bolton and the entire staff for their immense support throughout this period.
Finally we thank the 6th, 8th and 10th grade students who were eager to learn how to
program the S2 robot and made our research possible.

References
[1] Ala-Mutka, K., "Problems in Learning and Teaching Programming", Codewitz

Needs Analysis: Institute of Software Systems,
https://www.cs.tut.fi/~edge/literature_study.pdf

[2] Alvarez Caro I. (2011). VEX Robotics: STEM Program and Robotics Competition Expansion into
Europe Published by Springer Berlin Heidelberg. Page 2

[3] Ayanian, N. et al. (2010). Sparking a lifelong interest in engineering through a summer academy in
robotics. International Design Engineering Technical Conferences and Computers and Information in
Engineering Conference ASME 2010

[4] Bell, t. et al. (2012). Computer science unplugged, robotics, and outreach activities. ACM technical
symposium on Computer Science Education 2012

[5] Boyle, T. et al. (2003). Using Blended Learning to Improve Student Success Rates in Learning to
Program. Journal of Educational Media. 2003

[6] Chen, M et al. (2010). Instructional Simulations for Teaching High School Computer Science
Concepts: A Technology Acceptance Perspective Digital Game and Intelligent Toy Enhanced
Learning (DIGITEL), 2010 IEEE

[7] Connaughton, R. and Modlin, M. 2009. A Modular and Extendable Robotics Platform for Education
2009 ASEE/IEEE Frontiers in Education Conference

[8] Culler, D et al (2014). Computing Visions for 2025. Computing Research Association;
http://cra.org/uploads/documents/events/snowbird/2014slides/2025_Snowbird_CCC_session.pdf

[9] Davies, S. (1993). Models and theories of programming strategy. International Journal of Man-
Machine Studies, 39, pp. 237-267

[10] Dutta S. and Mathur R. 1996. Computer Programming – A Building Block of Stem. ISEC 2011
[11] Eubanks, A. et al. (2011). A comparison of compact robotics platforms for model teaching. Journal of

Computing Sciences in Colleges ACM 2011

https://www.cs.tut.fi/~edge/literature_study.pdf
http://cra.org/uploads/documents/events/snowbird/2014slides/2025_Snowbird_CCC_session.pdf

[12] Henkel Z. et al. (2009) Exploring Computer Science through Autonomous Robotics. FIE 09 IEEE
[13] Jenkins, T. “On the difficulty of learning to program.” In LTSN_ICS Conference. 27-29 August 2002.

Proceedings of the 3rd Annual LTSN Information and Computer Science Conference.
[14] Nche-Eyabi, O. et al. (2016) Drawing with Robots: An Experience Report (Fundamental). ASEE

Annual Conference & Exposition
[15] Parallax Inc. Scribbler 2 Robot. 2016

https://www.parallax.com/product/28136
[16] Piteira, M and Costa, C. (2013). Learning Computer Programming: Study of difficulties in learning

programming. Proceedings of the 2013 International Conference on Information Systems and Design
of Communication (ISDOC) 2013 ACM

[17] Quintana, C. et al. (2002). A Case Study to Distill Structural Scaffolding Guidelines for Scaffolded
Software Environments. SIGCHI Conference on Human Factors in Computing Systems

[18] Stroulia, E. and Systa, T. (2002). Dynamic analysis for reverse engineering and program
understanding. ACM SIGAPP Applied Computing Review

[19] Tim A. Entity Framework goes 'code first' as Microsoft pulls visual design tool. (2014)
http://www.theregister.co.uk/2014/10/23/entity_framework_goes_codefirst_only_as_microsoft_shutter
s_yet_another_visual_modelling_tool/

[20] Wang X and Zhou Z. (2011) The research of situational teaching mode of programming in high school
with Scratch. Information Technology and Artificial Intelligence Conference (ITAIC), 2011 IEEE
Joint International

[21] Wientrop, D and Wilenski, U. (2015). To Block or not to Block, That is the Question: Students’
Perceptions of Blocks-based Programming ACM IDC 2015.

http://www.theregister.co.uk/2014/10/23/entity_framework_goes_codefirst_only_as_microsoft_shutters_yet_another_visual_modelling_tool/
http://www.theregister.co.uk/2014/10/23/entity_framework_goes_codefirst_only_as_microsoft_shutters_yet_another_visual_modelling_tool/

