
An Application of Pthreads and Mutexes

Ethan Y. Myers

Cedar Brook Academy

An Application of Pthreads and Mutexes

1.0 Introduction

 The paper Multiprocessing Using Pthreads and Mutexes [1] describes the basics of

Pthreads and mutexes and how to effectively create and code them. Creating Pthreads is

straightforward. The more complicated part is the application of Pthreads and mutexes in a

program. The example program will help explain an application of Pthreads and mutexes.

2.0 Importance of Organization

 Documentation is very important in programming, but just as necessary as documentation

is organization, especially with Pthreads. When examining the code in this paper, note that there

are many different sections in the code. There are three sections for defining, initializing, and

locking the mutexes. There is one section for creating, initializing, and setting the attributes for

the Pthreads. Additionally, there are three sections for defining and creating Pthreads. Finally,

there is a section for the main program. Without this type of organization, all these different

functions would be used in apparently random places and it would be hard to know what was

created and where. The programmer would have a difficult time changing the code without

structural organization. With this arrangement, it is easy and quick to find what is created and

where it is used. Note, for mere information on defining and creating threads, refer to the paper

Multiprocessing Using Pthreads and Mutexes.

3.0 Example Implementation of Pthreads

 Following is an example program using Pthreads and mutexes. This code is an abridged

example of the actual Cedar Brook Academy (CBA) code. Omitted are the threads that control

the functioning of the claw at the same time that the arm is functioning. In total, the full system

has seven threads. The program is an example of what the CBA code does in the first few

seconds of the match. It grabs Botguy with a claw that is swung out by an arm. The idea behind

the code is to be time efficient and as quick as possible. Using Pthreads and mutexes helped us

accomplish this goal. As one will see in the program, there will be four different threads

executing at the same time, including the main thread. More detailed explanations of the code

will follow.

4.0 Explanation of Code

Notice that the ‘pthread.h’ header file is

included in the program. Without it, the program

cannot use Pthreads. Also note that everything is

passed by reference. This means that a pointer to

the object is passed to a function as opposed to a

copy of the object being passed. This is needed

because the functions using the threads and

mutexes need to be able to change the objects

that represent a thread or mutex. In object

oriented terminology, pthread_t,

pthread_mutex_t, and other Pthread objects are

opaque objects, which means that they have to be

updated indirectly by using a function call.

4.1 Overview of Code

In the code there are four threads, the main thread, a thread for swinging the arm forward,

a thread for grabbing Botguy, and a thread for swinging the arm back. Each thread has an

associated mutex and Pthread. With each mutex, it must be defined, initialized, and locked.

Similar with the Pthreads, each mutex must be defined and created. There is only one attribute of

the Pthread that is used, its detach state. The detach state has two settings, joinable and

detached. For each different state, the program creates an attribute setting associated with it.

Each attribute must be defined, initialized, and set. The explanation of the main code will come

later.

4.2 Mutex Sections of the Code

The very first section in the code (lines 3-9) defines the mutexes globally, which means

that they are in the scope of all functions. The mutexes are defined globally so that the three

functions, swing_arm_forward(), grab_botguy(), and swing_arm_back(), can lock the

mutexes. Without the mutexes being defined globally, the functions would not be able to lock

the mutexes because they would be non-existent in the function’s scope.

The second section (lines 14-19) initializes the mutexes. When initializing the mutexes,

passing in NULL tells the program to set the attributes of the mutex to the default settings.

The third section (lines 21-26) locks the mutexes. The mutexes are initially locked so

that when the Pthreads are created, they do not start the function at that time. This will be

described later in more detail.

4.3 Pthread Sections of the Code

The fourth section (lines 28-37) creates, initializes, and sets the attributes that will define

the threads properties. The attribute CBA_pthread_attr is set as detached, and the attribute

CBA_pthread_attr2 is set as joinable. These will later be passed to the pthread_create()

command when the program creates the Pthreads.

The third section (lines 39-44) defines the threads. The fourth section (lines 46-52)

creates the threads. Examining the first thread, pthread_create(&swing_arm_forward_t,

&CBA_pthread_attr2,swing_arm_forward,NULL), the first argument passes in the thread

swing_arm_forward_t, which tells the program the thread ID of the thread it is creating. The

second argument, CBA_pthread_attr2, tells the program that the thread is joinable. The third

argument, swing_arm_forward, is the function that will be run in the thread. The fourth

argument, NULL, tells the program to not pass anything to the function. Note that in the fourth

section, the second thread created is joinable, and the third thread created is detached.

4.4 The Three Functions

 There are only three functions in this program, swing_arm_forward(), grab_botguy(),

and swing_arm_back(). Each function does as described by its name. The crucial part to these

functions is the mutex locking that each one does. As can be seen in the code (lines 74-91), each

function calls a lock on its associated mutex. Each mutex is already locked before the thread

associated with each function is created. As described more thoroughly in the paper

Multiprocessing Using Pthreads and Mutexes, if a mutex is already locked, and another function

tries to lock it, that function will be blocked. Therefore, the function must wait until the mutex is

unlocked before it can continue to execute the remainder of its code. This allows for instant

execution of the functions by the main program by simply unlocking the mutexes.

4.5 Main Program

Prior to this section, the initializing and setting of the mutexes and Pthreads has not

caused the robot to move. The primary section of the program (lines 54-71) actually starts to

move the robot. The sections starts out by unlocking the mutex holding the swing_arm_forward

thread with the command, pthread_mutex_unlock(&swing_arm_forward). As described in

section 4.4, this will allow the rest of the code in the swing_arm_forward() function to execute.

In essence, this kick starts the function. While the robot is swinging its arm forward, it is also

moving forward to Botguy using the go_straight() command. This is an example of two

threads executing at the same time.

The next command, pthread_join(&swing_arm_forward_t,NULL), in line 58, causes

the robot to wait till the arm is swung forward before the claw will grab Botguy. Botguy cannot

be grabbed without the arm fully forward. This line prevents this from happening. Similarly, the

mutex holding the grab_botguy() function is unlocked, allowing the function to execute.

Again, a pthread_join() command is utilized so that the robot won’t swing the arm back

before completely having a hold on Botguy. Lastly, in line 63, the swing_arm_back() function

is started, and in the next line, the robot moves forward. Thus, again having two threads execute

at the same time.

5.0 Saving Time

In reality, all four threads are running at the same time. However, the three threads

holding the functions appear to be dormant because they are waiting for their associated mutexes

to be unlocked.

The idea behind this method is to save time. The time it takes for the program to define,

create, and initialize mutexes and Pthreads is considerably long. In reality it may take almost a

second to run these startup routines. Although one second may not sound like a lot, it is very

significant. Botguy can be grabbed or knocked down in less than three seconds. If one second is

lost, thirty-three percent of the time it can take to get Botguy is wasted. One second could make

the difference in a match. This is why before wait_for_light() is called, the creation of all

the Pthreads and mutexes are done.

6.0 Naming Convention

As the program shows, CBA created a naming convention to keep the Pthreads and

mutexes organized. Each Pthread created has a ‘t’ following its name, and each mutex created

has a ‘m’ following its name. For each thread and mutex created, the name of the associated

function is used in naming the thread and mutex. For example, the function grab_botguy()

uses the Pthread grab_botguy_t and the mutex grab_botguy_m. This convention helps the

programmer analyze the code quickly without getting confused with which thread or mutex is

doing what.

7.0 Summary

 Pthreads are an effective way to implement parallelism within a program. It allows a

program to do two or more functions at any given time. With the example presented, it can be

concluded that organization is very important. Without clear organization, a programmer can get

lost trying to understand the code. Being time efficient is also key, which is why everything is

initialized and created up front before the robot is ready to start. Another key point is to lock the

mutexes first in the main thread and have each function lock its related mutex. This allows for

easy immediate execution of the function in the main thread by simply unlocking the mutex.

Lastly, create a naming convention to easily link each mutex and thread to the function. CBA

has done this effectively and it is very important in our programming.

References

[1] Myers, Ethan Y. "Multiprocessing Using Pthreads and Mutexes." Submitted to Proceedings

of 2009 Global Conference on Educational Robotics.

