
Concurrenct Object-Oriented C++ in Botball
Ziad Khattab
Qatar Academy

Concurrenct Object-Oriented C++ in Botball

1 Object-Oriented Architecture

1.1 Intro

As a Botball robot grows more complex and elaborate, it is a reasonable expectation
that the codebase should grow to accommodate this change. As more motors and servos
are added, they should be manipulated by interface functions that are easy and efficient
to use and test. Robot movement should be abstracted entirely to constraints like overall
movement distance, rather than fiddling with individual motors in order to simply move
the robot forward.

Ultimately, applying this principle tends towards a certain type of architecture where
it makes logical and logistical sense to group together the functions and variables con-
cerning one part of the robot under one umbrella, such as each servo or sensor. Naming
conventions can be somewhat helpful here, such as how camera-related functions are
prefixed with ”camera” (ie. camera_open(), camera_update(), etc). While naming
conventions improve readability, from the perspective of the compiler, they are largely
irrelevant. This means that while all camera-related functions may be appropriately
prefixed, attempting to actually pass around some sort of unified, holistic ”camera” is
not actually possible.

Solutions to this problem ultimately lead to the metaphorical ”Rome” of object-
oriented programming, where all the variables and functions relevant to a the real-
life representation of a physical object are grouped under some sort of programmatic
structure that represents it; in this case that is a C++ class. For example, a robot’s
position on the board and its bearing (angle) could be stored as data members in a
class, while the functions controlling its movement and turning would be methods in
that class.

This approach helps significantly streamline efficiency, readability, and reusability of
code in a project, especially with the help of C++’s virtual functions and polymorphic
inheritance.

1.2 Implementation

Delving into specifics, there are different avenues of implementation that could be used
to implement an object-oriented architecture for this sort of context.

The first approach is exclusive reliance on inheritance, where an abstract class

Robot is defined by including a pure virtual (and a virtual destructor of course) using
the suffix = 0; after the function prototype. Robot would only contain the variables and
methods applicable to the robot itself independent of any servos, cameras, motors, or
sensors, such as the robot’s position and bearing. Its abstract status would indicate that
it cannot operate in a standalone manner, which is indicative of a real-life Botball robot
that is not fixed with any kind of parts or attachments.

This class would be accompanied by other classes representing the parts that would
be added to a robot, such as a class Servo, class Motor, class Camera, etc. From
here, a new child class of Robot, such as a class Create, would inherit from Robot as

well as from Servo and Camera as needed based on whether or not it will be fixed with
these parts, as below:

class Create : public Robot, public Servo, public Camera

{

// Add class data here

};

The result is that Create contains all of the relevant data from Robot, Servo, and
Camera. Taking this one step further, an abstract class Sensor could be defined, from
which the different types of sensors (ie. class Light_Sensor, class US_Sensor, class
Slide_Sensor, etc) can inherit. One possible implementation scenario would be as such:

class Sensor

{

public:

virtual int sensorReading() = 0;

};

class Light_Sensor : public Sensor

{

public:

virtual int sensorReading() override;

};

class Slide_Sensor : public Sensor

{

public:

virtual int sensorReading() override;

};

class Robot { };

class Create : public Robot, public Light_Sensor, public Slide_Sensor { };

The issue with this architecture becomes apparent when attempting to envision a
realistic runtime scenario. To begin with, the double-inheritance of Sensor through
Light_Sensor and Slide_Sensor will not achieve the desired outcome of a robot con-
taining two sensors, but will rather contain some sort of overlapping amalgamation of
the two derived classes, since inheritance does not create a new class instance but simply
imports all of the data and methods from the parent class(es). Additionally, the function
sensorReading() has two completely distinct overridden definitions in each child class
of Sensor, but both of them are inherited, with no clear rule as to which one would
be used at runtime by Create. While virtual inheritance can help alleviate the second
issue, it still does not solve the first issue of single-instance due to that being part of the
nature of inheritance.

The solution to this is to combine the useful aspects of polymorphic inheritane with
a composition-based system. Instead of indiscriminately using inheritence, the choice

between composition and inheritance can be summed up as follows: ”If an object is
something, it inherits. If an object has something, it composes.”

An example in implementation would take a form similar to the following:

class Robot { };

class Servo { };

class Camera { };

class Create : public Robot

{

public:

Servo servo_one, servo_two;

Camera main_camera;

};

This architecture not only makes more logical sense, it is also far safer and easier to
use as compared to the alternatives.

This way, the program can be constructed by representing a real-world object by an
equivalent structure in a program that can be passed as a single argument to a function
or stored as one standalone element in an array or data structure, for example.

2 Concurrent Programming

2.1 Intro

The concept of concurrent programming is one that has been clearly defined at least since
the 1960s, and yet continues to play a major role in computing to this day, especially in
fields such as systems programming.

Essentially, concurrent programming involves the use of multiple threads of execu-
tion in a single program (concurrent programming can also be achieved using multiple
processes, however this is an entirely different study and does not largely pertain to
Botball). These threads allow for the simultaneous execution of commands, in contrast
to the standard mode of execution where a computer executes commands one by one.

Due to their nature in simultaneously performing operations, there are of course a
number of issues that can arise with incorrectly implemented multithreaded code, making
it one of the more difficult aspects of programming. However, effective implementation
can create a formidable program that is capable at performing at a rate of efficiency
orders of magnitude above its competition.

2.2 Motivation

The choice to implement a multithreaded environment is one that usually arises out
of necessessity rather than desire. Threads are fairly complex, can be computationally

expensive, require careful awareness of synchronization and memory access, can leak
memory if improperly handled, and are notoriously difficult to debug.

However, in the context of Botball, the need for multithreading arises due to the
need to accommodate both complex engineering and programming architecture. Take
for example the following code, which will move two servos to their required positions:

static const int PORT_A = 0, PORT_B = 1;

enable_servos();

set_servo_position(PORT_A, 1800);

set_servo_position(PORT_B, 1500);

disable_servos();

This is an example of a scenario where multithreading is required to accommodate
a physical reality of the robot’s construction, where it needs to move two servos at the
same time, but is presently unable to do so, since the computer will execute the first
call of set_servo_position(), and only once that function returns will it execute the
second call. In a hypothetical scenario, a robot may need to execute a continuous scissor
lift to create a vertical motion. The solution, of course, is multithreading:

#include <thread>

static const int PORT_A = 0, PORT_B = 1;

enable_servos();

std::thread servo_a_thread(set_servo_position, PORT_A, 1800);

std::thread servo_b_thread(set_servo_position, PORT_B, 1500);

servo_a_thread.join();

servo_b_thread.join();

disable_servos();

The code above creates two threads of execution that run the set_servo_position()
function for each servo, with the second and third constructor arguments to std::thread
being the arguments that the thread function should take. The threads are then in-
structed to wait for termination and then join using the std::thread::join() function.

This is the basic structure of thread handling in C++. The syntax for calling member
functions of a class, however, is slightly different:

class Object

{

public:

void function(int arg) { //... }

};

int main(int argc, char** argv)

{

Object instance;

int argument;

std::thread Thread(&Object::function, &instance, argument);

Thread.join();

}

Attempting to create a thread from within Object would of course mean that
”&instance” would be replaced by ”this”.

2.3 Implementation

While a rudimentary implementation scenario has been covered above, multithreading
becomes more involved in the context of a pre-existing object-oriented structure. Con-
sider, for example, the following code for moving a robot’s wheels and two servos at the
same time.

#include <thread>

static const int PORT_A = 0, PORT_B = 1;

static const int MOTOR_LEFT = 0, MOTOR_RIGHT = 1;

enable_servos();

std::thread servo_a_thread(set_servo_position, PORT_A, 1800);

std::thread servo_b_thread(set_servo_position, PORT_B, 1500);

mtp(MOTOR_LEFT, 1500, 700);

mtp(MOTOR_RIGHT, 1500, 700);

bmd(MOTOR_LEFT);

bmd(MOTOR_RIGHT);

servo_a_thread.join();

servo_b_thread.join();

disable_servos();

Purely in terms of functionality, the code above performs its task perfectly! It ex-
ecutes all three motions simultaneously and effectively. However, it fails miserably in
terms of readability, maintainability, and reusability, rendering it near useless in the
broader context of the project.

For one thing, the variables are only vaguely defined, and are all declared within
main(). The movement code performs a low-level movement-and-blocking sequence of
each motor individually, requiring four times as many lines as it should to perform one
single task. Additionally, redundant/repeated arguments are passed each time, creating
significantly more room for error.

The code is very difficult to read and understand at a glance, since there is no
indication of function beyond variable names. mtp() and bmd() are vaguely indicative
of their function, however one must individually read each argument to the functions in
order to decipher that the robot is moving in a straight line.

Attempting to repeat a similar, but slightly modified sequence where all the servo
positions and movement distances are different entails copy-paste modification of at least
6 numerical arguments, perhaps more, making the code very difficult to reuse.

The solution, of course, is to apply the principles and practices of object-oriented
programming detailed earlier. The robot and servos ought to be represented by objects,
where the robot would contain the two servos. The question now, of course, is as to how
the multithreading would be handled in the context of an object-oriented architecture.

Now, we will define a class Servo that handles its own thread spawning and joining
from within the object, as well as giving the user an option to run a command sequentially

or simultaneously.

#include <thread>

#include <new>

class Servo

{

protected:

int const PORT;

std::thread* movement_thread = nullptr;

virtual void move_base(int distance, int time) { //... }

public:

Servo(int port) : PORT(port) { }

virtual ~servo() { }

void join_movement_thread()

{

if (movement_thread)

{

if(movement_thread->joinable()) movement_thread->join();

delete movement_thread; movement_thread = nullptr;

}

}

virtual void move(int distance, int time, bool threaded)

{

movement_thread = new std::thread(&Servo::move_base, this,

distance, time);

if (!threaded) join_movement_thread();

}

};

int main(int argc, char** argv)

{

Servo servo;

// Concurrent movement

servo.move(400, 100, true);

servo.join_movement_thread();

// Sequential movement

servo.move(400, 100, false);

}

With this implementation, a Servo instance can be declared inside the Create class,
for example, and then the user can decide when programming the actual sequence
whether they want the thread to run in parallel or whether they want to wait for it
to finish executing before moving onto the next command.

Now consider the case of a robot that has already used all the maximum allowable
number of servos, and so now needs to use a motor as a servo. The functions mtp(),
mrp(), and bmd() serve well towards this purpose as they move the motor based on

distance, however motors have a significant difference from servos in that they are not
locked in place, and will drift out of position if force is applied to them. The remedy to
this is to have some sort of constant check running ”in the background” to determine if
the motor is drifting and correct any drift accordingly.

While the function of this code may not be immediately apparent at a glance, it
essentially inherits from the previous Servo class and adds the needed aspects of motor
functionality. move_base() is overrided to suit the implementation needed for a motor
as opposed to a servo. The thread creation functions identically to the base servo class
in that it spawns a new thread when move() is called, which can later be joined with
join_movement_thread() if threaded is set to true, or will automatically join if it is
set to false.

The main difference comes with the addition of drift_thread and its associated
functions, as well as the three std::atomic<> variables: current_position, done, and
moving. Essentially, the constructor of Servo_Motor spawns the thread drift_thread

and makes it run the function check_drift(). In order to check the drift, there are two
conditions that must be fulfilled: we must have previous knowledge of the correct position
that the motor has drifted from, and the robot should not attempt to correct motor drift
while it is deliberately moving the motor. The variable current_position addresses
the first concern; any calls to move() set current_position accordingly, meaning that
it will only be updated by deliberate, intentional movements and serves as a point of
reference against which a drifting motor can be compared. However, a normal int would
not suffice since the variable is being modified by movement_thread while being read
by drift_thread. The simultaneous access of one variable or location in memory by
multiple threads can lead to what is known as a ”race condition”, where the appropriate
timing for access to the variable is not controlled, resulting in poorly defined behavior.

The solution here is the use of std::atomic<>, a standard library template for
atomic variables. Atomic variables solve this issue by internally controlling access to
their memory and allowing for the same variable to be accessed by two threads.

The variable moving is set to true when the function move() is called, then set
to false when it terminates. This way, the motor will not attempt to correct drift
while it is being commanded to move. Additionally, drift only needs to be corrected
while an instance of Servo_Motor is in scope, therefore done remains as false until
the destruction of Servo_Motor, where it is set to true and check_drift() is able to
terminate.

While check_drift() is running within drift_thread, it performs a simple compar-
ison check to see whether the motor has drifted significantly from current_position,
and adjusts it accordingly. This way, the motor is able to correct its drift throughout
the duration of the program without holding up the program or taking any additional
time, and without hindering the normal movement of the motor.

This is just one example of what can be done with object-oriented concurrent pro-
gramming, and how it can be done. Opening the door for well-structured, maintainable
code that can run multiple tasks simultaneously is an incredibly powerful tool in Botball
and in most areas of robotics in general.

