
Bidirectional Communication Between Two Wallaby Clients
Aaron Pierce
Norman High School

Bidirectional Communication Between Two Wallaby Clients

1. Abstract
Concurrency in Botball has historically been a challenge. In order for two robots to collaborate to
complete one task, very precise timing must be employed, or the processes of both robots may be
compromised. Be it defensive strategies of other teams, hardware faults, or other unexpected
events, this precise timing could be interrupted and the robots would be none the wiser.
Bidirectional communication, achieved via Submodule Driven Development (see paper
“Reinventing the Botball Programming Process with Submodule Driven Development”), allows
for streamlined communication between robots, enabling concurrency in operations, and live
reporting of errors to prevent catastrophe. This paper will explore the applications,
implementations, and potential problems of connecting two wallaby clients, and concludes that
an approach using WebSockets is highly beneficial to a team, and is the superior approach over
other protocols.

2. Introduction
The C programming language has its benefits. Being a low level language, and being able to
easily interact with hardware, it finds itself a good fit for robotics. However, because C is so low
level, it makes interacting with higher level constructs harder, such as networks. Languages like
JavaScript, which are specifically built for use on the internet make for a much easier experience
developing network attached programs. Libraries like Node.JS remove the need for a HTML
document bound scripts, and allow us to create operating system level programs that can interact
with our robots. Using Node.JS, as well as Socket.IO, Wallabies can use the WebSocket protocol
to communicate, allowing for efficient and reliable transmission of arbitrary files, data, and
messages. Using this transmission, robots can communicate via WebSockets, and can execute
submodules in response to this data, enabling a wide variety of responsive strategy.

3. Connecting Two Wallabies
In order for Wallabies to communicate via a network, they must be connected to a common
network. Creating a server and client paradigm, one Wallaby runs a Socket.IO server, with the
client Wallaby connected to the server’s WiFi network, and running a Socket.IO client. Despite a
client/server relationship, both wallabies can send messages to the other; the Wallaby
communication is completely bidirectional. In order to connect one Wallaby to another, we must
disable the WiFi server capability and enable WiFi connection services. This can be
accomplished with the commands illustrated in Figure 1.

Fig. 1. Conversion of Server Wallaby to Client Wallaby. These commands can be input by

connecting a keyboard to the wallaby, or establishing an SSH connection.

From the Wallaby newly set as a client, the command wpa_cli can be executed to connect the
client wallaby to the server’s network. This process is documented in Figure 2.

Fig. 2. Connection of client Wallaby to server’s network.

Now having the Wallabies connected, they can begin communicating via WebSockets.

3. Implementation of Communication Protocol
Implementation of WebSocket protocols are based on two programs, a server, an example of
which shown in Figure 3, and a client, an example illustrated in Figure 4.

Fig.3. Example Socket.IO server. Run by executing node server.js

Fig.4. Example Socket.IO client. Run by executing node client.js wallabyIP:3000. The ip of a

Wallaby is usually 192.168.125.1
Inside the socket.on blocks, any arbitrary code can be executed. The best implementation of this
being executing a submodule, such as one that would drive a Wallaby forward. This could be
implemented such that after the server’s submodule finished executing, it would send a message
to the client to begin theirs. This would make one wallaby drive forward, and the other to do the
same only after the first finished. The real world use cases of Wallaby to Wallaby
communication would be far more complex, but this is an excellent first example.

4. Advantages of WebSockets Over Other Protocols
In connecting two wallabies, many different approaches were attempted. Analyzing a simple
HTTP request, times of more than a 500ms​[1] ​can be found. WebRTC was also explored, but it is
intended for a more media driven experience. SCP file transfer was proposed by the team as

well, but the data collected and illustrated in Figures 5 shows that SCP file transfer was a
suboptimal solution

Shown here, WebSockets regularly operated at speeds of less than thirty milliseconds, whereas
SCP file transfers took consistently more than six-thousand milliseconds, or six whole seconds
(Raw data can be found in appendix 1). SCP was initially favored due to its ability to be
executed straight from a C program, or the terminal without the need for a client/server program
structure, but because it is transferring files the delay becomes compounded. You have to
account for the write speed of one Wallaby, the upload speed of the file, the download speed of
the file, and the write speed of the other Wallaby. The WebSocket implementation removes this
entirely, and is limited only by the network speed. In a use case of constant sensor data polling,
where one robot uses the other’s sensor data in realtime, you want as little delay as possible,
which is best achieved with WebSockets.

5. Issues
While the WebSocket protocol is quite reliable in its implementations, there are some potential
downsides. One is the forced use of Submodule Driven Development. This complicates the
workflow of developing Botball programs and thus limits this approach to only advanced teams.
Secondly, WebSockets aren’t without delay. Because all of the Wallabies are emitting a WiFi
signal, the room can get bogged down quickly. This may create some unreliable conditions for
network operations, however, due to the nature of WebSockets we know if a connection is not

being established, and using Submodule Driven Development, an entirely different program can
be executed that runs without a network requirement.

6. Conclusion
Evidenced by low latency communication, and failsafes in the case of errors such as a missing
network connection, a pairing of Submodule Driven Development as well as WebSocket based
communication allows for incredibly powerful collaborative robotics approaches. Due to the
latency of other protocols and approaches it can be concluded that WebSockets are the vastly
superior communication protocol.

6a. Appendix 1
Raw WebSocket latency data, measured as the amount of milliseconds from the server sending
the first message to when the server received the success callback message. The server sent a
message every second.

47 50 48 34 28 36 36 27 21 37 23 32 21
21 39 34 35 36 23 34 20 37 23 39 21 20
39 38 23 36 24 24 48 21 56 20 69 37 37
18 20 38 84 23 35 22 23 31 21 25 37 24
20 37 36 24 23 35 40 93 25 40 38 36 21
20 41 43 43 35 28 17 20 20 25 22 21 20
23 23 22 116 36 21 23 32 69 40 21 21 36
20 19 60 38 20 22 23 25 22 24 24 67 37
21 61 123 32 98 81 41 19 19 22 46 306 38
22 36 17 21 20 58 20 21 21 85 35 31 38
23 22 21 24 37 27 20 21 42 21 33 21 24
55 37 20 56 17 25 24 22 17 20 23 37 31
34 21 24 30 21 34 36 36 75 37

Raw SCP latency data, measured as the amount of milliseconds from the initializing of the SCP
command to the synchronous process ending. Attempts were one second apart, from completion
of one to the initialization of the other

6012 6313 6034 6356 6358 6343 6331 6345 6349 6340 6343 6343 6402
6357 6318 6309 6335 6382 6339 6333 6355 6354 6328 6345 6318 6362
6330 6322 6352 6336 6326 6340 6358 6346 6331 6354 6344 6342 6367
6339 6348 6328 6352 6329 6314 6371 6343 6338 6374 6371 6432 6433

6422 6345 6344 6370 6394 6363 6341 6375 6387 6342 6341 6327 6360
6350 6350 6353 6332 6419 6350 6343 6379 6372 6341 6345 6357 6353
6355 6355 6356 6363 6352 6318 6316 6349 6351 6349 6349 6364 6321
6362 6370 6336 6336 6335 6348 6342 6330 6329 6332 6340 6341 6374
6337 6345 6313 6340 6358 6344 6308 6348 6327 6366 6037 6284 6372
6370 6358 6313 6341 6379 6315 6345 6370 6353 6315 6344 6337 6353
6343 6334 6344 6336 6332 6336 6414 6359 6368 6368 6347 6355 6339
6331 6341 6357 6320 6364 6326 6349 6349 6353 6365 6335 6401 6342
6323 6365 6333 6327 6352 6337 6358 6334 6334 6361

7. Works Cited

1. “Analysis of HTTP Performance Problems.” ​Analysis of HTTP Performance Problems​,
W3 Foundation, www.w3.org/Protocols/HTTP-NG/http-prob.html.

