Hedgehog: A Versatile Robotics Platform for Education and Advanced Applications
Timon Hobert, Reinhard Grabler, Clemens Koza, Christoph Krofitsch
Practical Robotics Institute Austria, Email: [hoebert, grabler, koza, krofitsch] @pria.at

Hedgehog: A Versatile Robotics Platform for
Education and Advanced Applications

1 Introduction

Unfortunately there has been a distinct lack of student interest combined with a lack of adequately
trained workforce in the domains of science, technology, engineering and math (STEM) in the
recent years. Therefore, it is more important than ever to introduce students to STEM [1], [2].
Robotics is a suitable instrument for teaching purposes in STEM on various educational levels due
to its interdisciplinary nature and its appeal to young people [1], [2], [3], [4]. Early exposure to
these fields increases the impact of taken efforts.

Young people are fascinated by autonomously acting machines such as robots. This fascination and
the variety of fields and topics covered make robotics a powerful idea to engage with, which re-
quires teamwork, creativity and entrepreneurial skills for the design, programming and innovative
exploitation of its possibilities. Creating and programming a robot represents an interdisciplinary
project and involves topics such as movement, navigation, coordination, grasping, audio and video
processing, as well as cognition and recognition. Thus, it supports the development of systems
thinking, problem solving, self-control, and teamwork skills [5], [6].

However, school budgets are often too small for introducing robotics at young ages due to the
required investments in equipment. Furthermore, teachers trained adequately in robotics are often
not available for these ages. As a consequence, only individual teachers efforts dominate robotics
education [1], [2], [7]. Despite the fact that the robotics industry provides pre-programmed pre-
fabricated robots likewise to black box solutions for the industrial environment, the educational
domain rather involves white box solutions, which aims at building robots from scratch [8]. For
leveraging such solutions to a broader application in formal education, the programming tech-
nologies should be easy to use and understandable for allowing also teachers without extensive
computer science backgrounds to use them in their lessons. Generally, it would be desirable to
reduce the programming requirements for robots accordingly [9]. This led to the development of
Hedgehog [10], a low priced robot controller that involves smartphones and similar mobile devices.
Smartphones provide a rich user interface via touch screen, network capabilities, fast processors,
a lot of memory, and internal sensors, such as gyroscopes, acceleration sensors, and cameras [10].
With smartphones getting increasingly common among even young school children, duplicating
these capabilities in a robot controller unnecessarily increases costs. At the same time, using the
smartphone further engages students in the subject matter. Supplementary material and intuitive
user interfaces support teachers without specific training and aid teachers and children in a shared
learning and exploration experience.

Using mobile devices lets Hedgehog automatically benefit from innovations in the field of con-
sumer electronics. Network capabilities and other features less important for introductory robotics
courses open up a wide area of applications in and beyond the education domain [11], [12]. These
benefits make Hedgehog less susceptible to obsolescence and thus a versatile long term invest-
ment.

2 Concept

Figure 1 shows the Hedgehog Architecture. It is designed to be used in different configurations
depending on the users needs and capabilities.

The first configuration uses the controller as programmable black box. User programs can be
written and deployed over WiFi via the Hedgehog desktop IDE or via the Hedgehog smartphone
app. To do so, the IDE offers a number of library function headers to use, e.g. for reading sensor
values or driving motors. When deploying, the Software Controller (SWC) receives user programs
as source code, compiles them directly and saves them. During the execution the concrete hardware
commands are transmitted to the Hardware Controller (HWC).

The Hedgehog app also provides the whole graphical User-Interface (GUI) for the controller to
test connected motors and sensors. This GUI eliminates the need for an onboard screen found on
most conventional educational controllers.

The HWC is responsible for hardware specific tasks and is effectively a black box to the user.
These tasks include generating pulse-width modulated signals for motors and servos, providing
WiFi connectivity, or communicating with external hardware. Because of the easy usage of this
configuration, it is designed for students to learn the basics about robotics.

Basic Configuration Advanced Configuration

Custom App Custom App
Hedgehog API Hedgehog API

NZM

User Programs

Hedgehog IDE Hedgehog App

@

User Programs

optional

Hedgehog API Hedgehog API

HW Controller HW Controller

Hedgehog Controller
Hedgehog Controller

~ |/0 sensors, Motors,... & External HW ~ /0 sensors, Motors,... & Extermal HW [

Figure 1: Hedgehog architecture showing the core components and interfaces [10].

The second configuration shows a possible use for advanced applications, where the user can pro-
gram different components on different layers. On the top layer custom apps use the Hedgehog

API to provide a custom graphical User Interface and application logic. This API is used to com-
municate to the HWC and the user programs on the SWC. The usage of the SWC is not necessary
but recommended. By encapsulating the hardware specific functions as a User program, a flexible
system architecture can be achieved. The direct connection between SWC and HWC is especially
beneficial for fast and high precision hardware-specific functionalities.

2.1 Communication Interfaces

All communication in Hedgehog is based on stateless message passing protocols incorporating
flow control and error containment. The Hedgehog Command Protocol (HCP) defines commands
for interfacing the HWC, e.g. for reading sensor values. For program management, the Hedgehog
Deployment Protocol (HDP) is used, which defines commands for compilation, compilation result,
execution, and execution states. Furthermore, commands are incorporated for transferring source
code from the SWC to the application, which enables a newly connected smartphone to import all
user programs and work with them as if they have been developed on it.

The applications communicate with the Controller via WiFi, which is realised through a WiFi
module that is integrated into the HWC. The HWC and SWC communicate via a wired serial
interface. Deployment commands between the app and the SWC are simply being forwarded
through the HWC. This architecture allows the SWC to be omitted in case no robot programming
is desired, while the app still has access to the robot hardware.

3 Implementation

In its current stage, the Hedgehog apps IDE supports programming in C. Support for other popular
languages, such as Python or Java, is planned for the future. To accommodate for the heavy use of
punctuation in most programming languages, additional code template buttons, e.g. for inserting
loops, are provided in the IDE. During deployment, the source code is sent to the SWC and com-
piled there. Compilation results, i.e. return code and any compiler messages, are sent back to the
application. The alternative, compiling on the application layer, would require cross-compilation
support. This is not viable on most mobile devices, and would introduce tighter coupling between
application and SWC, which is not desirable. For debugging, commands such as Debugging Break
Action, which suspends the running SWC program, are available to the application. These com-
mands correspond to commands and events of Gnu Debugger (GDB), although the use of GDB
on the SWC is an implementation detail. Figure 2 shows two screenshots from a Hedgehog debug
session.

3.1 Integrated Development Environment

For the IDE development we focused on platform-independent concepts that can be easily used
or adapted to different platforms. The platform-independent code of Hedgehog was developed
in a separate Java project containing the protocol implementations, user program management
and easy-to-use wrapper classes. This project serves as library or guideline for different platform
implementations. We already implemented the desktop IDE, the app for Android devices and a
version for i0S is currently in development.

The user experience should be the same on different platforms while taking advantage of the spe-
cific graphical user interface (GUI) concepts. The IDE interface will be separated in a screen for
managing programs, a screen for managing the versions of a program and a screen for editing a
program. The layout of the latter is shown in Figure 2.

HedgehOQJDE <programs test.c - version 4

#define FLASHPAUSE 100 // msecs to pause to let a flash subside
/* h_umptlon is that if light is detected by consecutive readings FLASHPAUSE apart,
it's the start light, not a flash O Save
NOTE: when tested with camera, the flash persisted < 0.1 sec o
* S
#define THRESHOLD &0 // minimum discrimination between light and dark
#define RED 255,0,0
#define GREEN 0,255,0
void colorbar({int i);
¥I void wait_for_Tlight(int light_port)

int xBut, OK=0, onval, offval, readlng ch=0, i;
xBut=get_extra buttons visible(); // in case usér has extra buttons visible
set_extra_buttons_visible(0); / turn them off
set_a butTon textT"-");
set ¢ _button text("-");
whiTe (oK) 1
set_b_button_text('Light is ON");
display_clear();
display_printf (O 0, "CALIBRATE: sensor port #:d", light_port);

dis lag Brlntf 0,1, press ON when light is on");
whi utton(——O){
msleep(100) ;
onvalzanalog(light_port); // sensor value when light is on
display_printf(0,2," Tight on value is = %d ",oonvall;
set_b_button text("nght is OFF");
dls_1a¥ prlntf 0,1," light on value is = %d ",oonval);
Qsle? 200
ee

while {b_button(
dlsplag prlntf(?

+ o

)); // debounce B button
il’"\ press OFF when light is off");

Figure 2: Editor screen layout of the desktop IDE. With the buttons on the right, the program can
be saved and versioned.

3.2 Software Controller

As Software controller we are using the Raspberry Pi Model A, as it is inexpensive and easy to use.
The software on the Raspberry Pi is written in C and encompasses all user program management
functionality on the SWC side. This includes implementing HDP, program reception, compilation,
execution, saving and memory management. Currently, the SWC supports user program man-
agement for C programs, but in future this will be extended to other programming languages as
well. The Raspberry Pi software is mainly structured as consumer for incoming commands; user
programs will be executed in child processes. Figure 3 depicts the control flow.

After initialization, the software waits for an incoming command from either the app, the HWC
or possible child processes. Generally, a received command is executed if the SWC supports it.
The following HDP commands are pointed out as they have a significant role in the user program
management:

e When receiving a compile command, include statements will be added to the source code in
order to link the right library functions for the currently connected HWC type. After saving
the source code, the program will be compiled and linked and the results will be sent back
to the app.

wait()
initialize send notify
cmd to paren

send compilation
result to HLC —
program
compile command send Ermg
an

i i msg to HL
d link - received —
execute
l command [error] l resources

decode
save so:rce command [?]\' fork()

|

[other emd] child process
[exec
enhance cmd] check for clean u
source code [compile cmd] program resourcé]s
[off c:md.l
shutdown
[notify emd]
®

Figure 3: Activity diagram showing the most significant elements of the control flow of the soft-
ware running on the SWC.

e When receiving an execute command for an existing program, a new child process will be
created, running simultaneously in the SWC software representing the parent process. The
child process then executes the main-function of the user program and after returning, it
informs the parent process using a notify command.

e When receiving a notify command, resources will be cleaned and the child process properly
terminated.

e When receiving a fetch command, all saved programs including all versions will be trans-
ferred to the app (not specifically shown in Figure 3).

While a child process is executing a user program, it will eventually need to interface the robot
hardware, e.g. for reading sensors or powering motors. As the SWC software (parent process)
manages the interface to the HWC, requests from the user program need to be forwarded. There-
fore, a pipe connection is established to each child process the software creates, keeping track of
its forwarded requests and passing the answers back accordingly. Figure 4 illustrates this concept
with an example user program.

User programs also have the opportunity to receive and send custom data from and to the ap-
plication, which is particularly important in more complex applications with a custom high-level
program. The commands for that are also forwarded in the way that is shown in Figure 4.

HW to
contr. HW
contr.

v

Sequence: pipe to
(1) analog sensor2v.a.lue child pipe to
(2) motor 4 position father

SW controller A
software v A .
forwarding

Sequence:

(1) Read analogsensor 2
(2) Move motor 3 at 50%
(3) Get position of motor 4

user program

int main(int argc, char** argc) {
int value = analog(2) ;
moveAtPower (3,50) ;
int position = getMotorPosition(4) ;
return 0;

Figure 4: When a user program is executing, its commands to the HWC and vice versa are for-
warded accordingly. In this example, the program first tries to read the value of an analog sensor.
The analog sensor value request is forwarded to the HWC, and the value in the according answer is
then assigned to the variable “value”. Since powering a motor is asynchronous, there is no answer
for that command. Reading the position of a motor works similarly to reading the analog sensor
value.

3.3 Hardware Controller

The HWC enables to connect and control sensors, motors and servos, handles time critical func-
tionality like Pulse-width modulation (PWM) generation and motor speed measurement, parses
and manages the communication with the application and SWC and powers the Controller via
battery. For the main processing unit of the HWC an ARM-Cortex M4 based STM32F3 series
processor with a clock speed of 72 MHz was chosen. Its rich 100 pin package together with
two additional shield PCBs (printed circuit boards) allows connecting and controlling 16 digital
sensors, 16 analog sensors, 6 motors and 6 servos. For communication the STM32 offers a rich
number of interfaces, whereof two 3.3V UART interfaces are used for the WiFi module and SWC
(Raspberry Pi). Other UART, SPI and I°C interfaces are free for possible extensions in future. For
powering the whole Controller, a 9.6V 2100mAh NiMH battery pack is used, including a charge
controller which keeps track of charging and discharging cycles and therefore the current battery
state. In general, focus was laid on only using affordable components in order to keep the Con-
troller at a low cost and thus aim for a broad educational application. Figure 5 shows the current
prototype of the HWC.

Figure 5: Current Hedgehog HWC on top of its battery.

4 Conclusion and Future Work

The Hedgehog controller represents a powerful platform for educational robotics. Using smart-
phones facilitates existing resources and provides a well-understood, attractive working environ-
ment. At the same time, Hedgehog can leverage future improvements in those devices. Overall,
this makes Hedgehog a worthwhile low-cost, long-term investment for schools. As mentioned be-
fore, 108 support and debugging features are currently in development. Additional programming
languages will make Hedgehog attractive to a broader audience. Graphical programming for the
Hedgehog platform, based on Catrobats Pocket Code [13], is already in its planning stages and
will make Hedgehog suitable for young children.

Acknowledgment

The authors would like to acknowledge the financial support of the COIN program, an initiative
by the Austrian Federal Ministry of Science, Research and Economy as well as Austrian Federal
Ministry for Transport, Innovation and Technology. Thanks to Christoph Krofitsch, Clemens Koza
and all other students who were involved in the development of the platform in recent years, for
their passion to make this project possible.

References

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

M. J. Mataric, N. P. Koenig, and D. Feil-Seifer, “Materials for enabling hands-on robotics
and stem education.” in Proceedings of the AAAI Spring Symposium on Robots and Robot
Venues: Resources for Al Education,, Stanford, CA, 2007.

G. Koppensteiner, M. Merdan, and D. P. Miller, “Teaching botball and researching disbotics,”
Robotics in Education, 2011.

D. Alimisis, J. Arlegui, N. Fava, S. Frangou, S. Ionita, E. Menegatti, S. Monfalcon, M. Moro,
K. Papanikolaou, and A. Pina, “Introducing robotics to teachers and schools: experiences

from the terecop project,” Proceedings for Constructionism, American Univ. of Paris, vol. 1,
pp- 1-10, 2010.

A. Bredenfeld, A. Hofmann, and G. Steinbauer, “Robotics in education initiatives in europe-
status, shortcomings and open questions,” in Proceedings of Intl. Conf. on Simulation, Model-
ing and Programming for Autonomous Robots (SIMPAR 2010) Workshops, darmstadt, 2010,
pp. 568-574.

J. Johnson, “Children, robotics, and education,” Artificial Life and Robotics, vol. 7, no. 1-2,
pp. 16-21, 2003.

I. M. Verner and D. J. Ahlgren, “Robot contest as a laboratory for experiential engineering
education,” J. Educ. Resour. Comput., vol. 4, no. 2, Jun. 2004.

D. Alimisis, “Integrating robotics in science and technology teacher training curriculum,” in
Proc. Int. Workshop Teaching Robot. Teaching Robot., Integr. Robot. School Curric, 2012.

C. Kynigos, “Black-and-white-box perspectives to distributed control and constructionism in
learning with robotics,” in Workshop Proceedings of SIMPAR, 2008, pp. 1-9.

B. Lazinica, A. Katalinic, “Self-organizing multi-robot assembly system,” INTERNATIONAL
SYMPOSIUM ON ROBOTICS, vol. 36, p. 42, 2005.

C. Krofitsch, C. Hinger, M. Merdan, and G. Koppensteiner, “Smartphone driven control of
robots for education and research,” in Robotics, Biomimetics, and Intelligent Computational
Systems (ROBIONETICS), 2013 IEEE International Conference on, Nov 2013, pp. 148-154.

S. Abbas, S. Hassan, and J. Yun, “Augmented reality based teaching pendant for industrial
robot,” in Control, Automation and Systems (ICCAS), 2012 12th International Conference
on, 2012, pp. 2210-2213.

R. Aroca, L. Gongalves, and P. Oliveira, “Towards smarter robots with smartphones,” Robo-
control 2012, 2012.

Catrobat, “Pocket Code (website),” URL: http://www.catrobat.org, online; accessed 2015-05-
26.

