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Advanced Robot Positioning 

How to use the EMF feedback of Black Gear Motors to navigate on the KIPR Link 

1. Introduction 
Navigation in a scientific context is a field of study which covers the process of monitoring 

and controlling the movement of an object. [1] These movements are desired to be fast, 

accurate and repeatable. These requirements cause many problems. 

As a matter of principle, the accuracy of a movement decreases with increasing speed if there 

is not a proper control loop to counter the rising error, thus making robots with high velocities 

hard to control. Therefore, precise motions need to be executed in a slow manner. Due to 

these facts it is impossible to be fast and accurate at the same time. 

Even though it might be possible to have a robot drive a short defined track with a more or 

less high velocity, the number of consecutive motions increases the total error at the end of 

the whole motion. The repeatability depends on the accuracy of each motion since the error of 

a preceding motion is generally carried into the next movement because the end position of 

the previous action is the start position of the next one. Due to this cumulative error it is 

necessary to realign a robot in periodic intervals or whenever possible.  

In Botball, navigation is about using actuators to move a robot from one spot to another, 

usually necessary to utilize some kind of effector at the destination to score points. Therefore 

it is crucial to have a high success rate of reaching the destination within the error margin.   

2. The problem of common steering 
The thing referred to as common steering in this paper is the method used by the average 

Botball team. Be it a newcomer or a veteran team with 6 years’ experience, most participants 

use approximately synchronous, separate control algorithms to steer. These usually work by 

setting the motor powers or velocities to a desired value at the initiation of a motion and then 

cancelling the movement by stopping the motors when certain criteria are fulfilled. Some 

examples for these criteria are passing a certain amount of time, reaching a defined sensor 

value or exceeding a defined motor position. These methods have sufficient accuracy for most 

applications and by regularly realigning the robot it is possible to achieve high success rates. 

However, realignments need time and as mentioned above this kind of steering loses accuracy 

with increased execution speed. Therefore the team needs to find the golden line between 

speed and accuracy to obtain the highest possible execution speed while maintaining a 

sufficient success rate.  



There are two major flaws that cause the inaccuracy of these methods of steering. First and 

foremost, since the separate movements of a program are not linked in any way and do not 

have any information about previous movements the robot is unable to determine the error 

that has occurred up to the point at which it is standing. The second issue is that the two 

motors are controlled individually. The typical way to minimize error while steering is to use 

two separate PID controllers which control the two motors. These PID controllers try to 

maintain a given speed which is set by the programmer in the program. The problem in doing 

so is that the PID controller of one motor does not know the velocity the other motor turns at. 

Due to that fact, neither of the motors can react to errors made by the other motor. 

 

Figure 1: Example of a timing error while steering 

An example of one of these errors can be seen in Figure 1. In this case, although both motors 

moved the same distance at the same speed before they stopped, the left motor moved slightly 

earlier. This causes the robot to move diagonally instead of straight forward. Although Figure 

1 is only meant to give an idea about these kinds of problems and the error is drawn 

exaggeratedly, the issue occurs even if it is nearly unnoticeable. However, even if only 

marginal, errors like that cumulate and cause great discrepancies between the intended route 

and the real route, especially since the PID controllers used to control the motor velocities in 

the KIPR Link have a rather slow update speed. 

To avoid the mentioned issues, our team developed a system called Robot Positioning System 

which will be described in the following chapter. 

3. The Robot Positioning System 
The RPS is a system devoted to taking care of all navigation related needs of a robot. The 

main tasks are steering and giving feedback about the current position. In general, the purpose 

of this system is allowing the user or programmer of the robot to simply specify a target 



location and having the machine do all the minor tasks like turning towards the target, driving 

there, adjusting the course to errors and whatsoever. By doing so, it allows the user to enter a 

specified location either in reference to a point of origin of a coordinate system or in reference 

to the robot’s current position. The following chapters are going to explain the separate 

systems that are necessary for the RPS and how they were implemented. 

3.1. Utilizing the EMF feedback of Black Gear Motors 
The Black Gear Motors included in the Botball electric set are standard full rotation servo 

motors that use DC-motors and a gear reduction to generate a rotatory force. These DC-

motors are controlled by a controller IC that drives an H-bridge, with a pulse width 

modulation, which controls the current supplied to the motor.  

Due to the electrical behavior of the anchor of a DC-motor, which can be expressed by a 

series of a resistor, a coil and a voltage source which represents the Electro Motive Force 

feedback of a motor, the measurement of the motor’s speed is possible without the use of 

additional sensors like encoders or the like. This can be done by briefly suspending the PWM 

cycle which feeds the DC-motor with a voltage that would drive a current in the anchor of the 

motor. By doing so, the magnetic field in the coil diminishes and the voltage measured at the 

connectors of the DC-motor becomes equal to the voltage of the voltage source representing 

the EMF feedback of the motor. The EMF is the force, which describes the voltage induction 

into the electrical circuit caused by the rotation of the DC-motor. Due to the induction law 

this voltage is proportional to the rotation speed multiplied with the motor constant of the 

motor. Using this mechanism, the motor controller IC measures the speed of the motor and 

calculates the so-called motor position counter by integrating that rotation speed. The motor 

position counter is then used by the get_motor_position_counter and the move_at_velocity 

PID controller.  

Normally, users would use the move_at_velocity method to move the two wheels of a robot 

with a desired speed. Because this method bears the problems described in chapter 2 RPS uses 

a different controller concept. 

3.1.1. Calculation of the differential movement 

The key feature of RPS is the calculation of the differential movement. This differential 

movement is the distance and angle which has been driven in a timeframe.  

Contrary to expectations, the calculation behind the RPS is pretty simple and can be done in 

no more than 5 lines of code. There are multiple ways that all result in the x, y and angular 

movement but one method is exceptionally simple.  

By assuming that the velocity has not changed in the sampling timeframe, which is a 

legitimate assumption, because the processing speed of the KIPR Link is high enough to do 

the calculations that are necessary in a short timeframe, it is possible to define the movement 

as an arc, as it can be seen in the left part of Figure 2. Using this knowledge it is possible to 

calculate the direction as well as the distance of the movement within the timeframe by 

linking the two differential motor position counters with simple mathematics. 



 

Figure 2: Visualization of the calculation 

The main concept of this calculation is splitting the movement into separate rotational and 

forward movements. By quantifying the arc motion into tiny rotations and tiny forward 

movements like in the right part of Figure 2 it is possible to say that total movement consists 

of a rotation, which is the sum of all the tiny little quantified rotations, and forward 

movements that are executed at the same time. After sampling the motor position counters of 

a timeframe and subtracting the motor position counters before that timeframe the rotational 

movement can be easily calculated by simply taking twice the difference of the motor position 

counters of each motor. Once the rotational component is known the forward distance is also 

easily calculated and by using some simple geometry the value of the x, y and angular 

movement likewise.  

3.2. Integrated motion 
Using the calculated values from chapter 3.1.1 it is possible to integrate all the differential 

movements and thus gain information about the current position in reference to a start 

position or a virtual coordinate system’s origin. The RPS provides this information in three 

values: the x-position, the y-position and the direction in which the robot is heading in 

degrees. These values are all in reference to a virtual Cartesian grid which is meant to have 

the positive x-axis pointing east, the positive y-axis pointing north, the point with the 

coordinates 0,0 in the southwest corner of the game board and all counterclockwise angles 

counted positive like it is defined in common geometry.  

3.3. Implementation 
Due to the fact that it is necessary to continuously keep calculating the differential movement 

and adding it to the current position, RPS uses a separate thread besides the main program 

thread to do these tasks. This thread is initialized at the beginning of the program and reads 

the motor position counter every 10 milliseconds. This 10 millisecond period was defined by 

pure arbitrariness and can be changed at will. However, this period should neither be chosen 



too long, because that would increase the error caused by unsteady velocity during the motor 

position counter sampling timeframe, nor too short, since that would cause unnecessary loss 

of processor resources and a type of aliasing error which would occur by oversampling the 

motor position counter. 

3.4. Utilization of the position data and movement algorithms 
The position data gained from the RPS can be used in many ways. It gives the program 

feedback about the moved distance as well as error caused by friction and other influences.  

The main usage of this position data is to control the movement of the robot. Due to the fact 

that the program has access to this data, it is possible to remove all controllers for the separate 

motor speeds, like the built in PID controller used for move_at_velocity, and control the 

power of the motors to steer into the desired direction. This workaround allows the robot to 

move at a high velocity without the necessity of having accurate motor speeds. Therefore, it is 

possible to move a robot using the maximum power of the motors without creating great 

errors since errors are also tracked by the calculation of the movement. Our team uses a 

simple algorithm which follows a virtual line between the robot’s current position and the 

target position. Since this algorithm is not bound to any execution times due to the fact that 

that the robot drives until it reaches its target position, it is possible to simply implement 

acceleration and deceleration ramps.  

Another handy application of the position data is the visualization of the robots position. 

Using the new graphics methods provided by KIPR, it is possible to draw a game board as 

well as a simple model of the robot on its current position. This drawing makes it possible to 

try out algorithms without the necessity of a real game board, since programmers can use the 

displayed robot position to check if the code is working correctly or not.  

3.5. Achievements, advantages, disadvantages, issues and flaws 

Using the RPS, we managed to create a steering method which allows the robot to execute 

extremely long movements without the necessity of realigning the robot at all, whether they 

are sensor based, of unknown length or include other unknown factors. Tests showed that 

driving a circle, a triangle or a square 20 to 30 times only caused a collective error of a few 

centimeters and a few degrees. The robot can even hit an obstacle and get stuck somewhere 

without losing track of its position. The RPS allows the usage of transmissions with a gear 

ratio of 3 and above which is simply impossible to control with the normal PID controllers 

used by move_at_velocity due to the great errors occurring during movements. 

A great flaw the system has is that it is necessary to have the motors literally linked to the 

ground. The whole calculation is based on the assumption, that the distance that the motor 

moved is directly linked to the distance the robot moved on its wheels. Therefore, if the 

wheels slip even in the slightest, the whole system is useless. This creates many requirements 

to the hardware of the robot. 

Another source of great problems are the programmed constants. The calculation requires the 

input of certain constants which are used to translate motor ticks into millimeters and degrees. 



These constants need to be calibrated manually by using reference movements like 360° turns 

and 10 meter straight driving.  

4. Conclusion and further developments 
In its current state, the RPS is already useable and opens up many possibilities for the usage 

of a great variety of algorithms. Nevertheless there are still flaws and issues in the RPS. 

Cumulative error caused by the calculation as well as slipping wheels reduce the long-term 

accuracy and thus make it practically impossible to move extensive distances without the 

necessity of realigning the robot by using walls or whatsoever, although movements like these 

far exceed the scope of BotBall. There are still abstract constants that need to be defined and 

calibrated by the user after a great deal of manual testing which make user-friendliness hardly 

existent. Due to reasons like these there are still many improvements to make. There are two 

major additions which are planned by us: 

One of the further plans is to write a program which automatically drives a sample movement 

and then asks the user to input the error. Using this method, the program would be able to 

calculate the corrected constant. 

The second idea is the implementation of additional sensors. For example using the accelero- 

and gyrometers built in the KIPR Link it would be possible to detect collisions as well as 

other external forces. By gaining this information it would be possible to make the robot try to 

get back on its path after crashing into another robot. Another planned sensor implementation 

would be the Asus Xtion depth sensor, which could be used for obstacle detection. After 

detecting the obstacles, the program would use a path-finding algorithm to avoid colliding 

with them. This is already in work and partly functional.  

5. Abbreviation table 
The following abbreviations were used in this paper: 

KIPR KISS Institute for Practical Robotics 

EMF Electro Motive Force 

PID Proportional, Integral, Derivative 

RPS Robot Positioning System 

DC Direct Current 

PWM Pulse Width Modulation 

IC Integrated Circuit 
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