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1. Introduction

Robotic interaction with complex environments has become increasingly difficult. Many chal-
lenges arise with the increased complexity of real world environments; one of the most complex
challenges is to deal with the fact that data is often incomplete and censored due to the physical
restrictions of the robotic sensors. Many approaches have been well studied to reduce the distur-
bances of the uncertainty. These approaches include using näıve feedback loops or formulating the
problem as a Markov decision problem (MDP) [2, 6].

It is known that this type of problem may be modelled as a Markov Decision Problem or a
Partially Observable MDP (POMDP), but these approaches also have significant drawbacks [1].
MDPs have not been extensively applied to robotics due to the fact that they make assumptions
about the continuity of the state space. Thus, since their uses have not been well studied in robotics
we do not know which problems they would be the most well suited for.

In this paper I will consider the problem of a multiobject manipulation planning problem with
the state of the environment is estimated imperfectly using sensors. The covariate vector will be
paritally unknown. The goal of this research is to move towards full autonomy of robotic movement
and decision making in complex environments when all of the data is not available to the robot or
operator.

The main theoretical contribution of this paper is an application of a novel reinforcement learning
algorithm applied to robotic planning. It is important to note that the parameters do not need to
lie in a well defined, finite discrete space.

The novel Q-learning algorithm is experimentally evaluated in simulation and compared to other
state of the art techniques. It was found that if some of the following properties hold, it may be
beneficial to employ the proposed censored reinforcement learning techniques to improve the long
term rewards of the robotic planning:

(1) actions must be taken to gain information about the system dynamics
(2) the system dynamics are uncertain and need to be updated at each new time step (e.g.

some objects become more difficult to manipulate based off of their individual properties)
(3) the problem can be formulated as a multistage decision problem

Overall, the paper is the first to propose long term reinforcement learning for manipulating many
objects in high dimensional, unknown and complex environments.

2. Related work

Dynamic treatment policies are becoming accepted and used in choosing effective actions for
robotic planning. A policy is a set of rules for determining the course of action at a specific time
point, depending on both the history of the object interaction and the system dynamics model up
until the given time. Although the same set of decision rules is applied to each scenario, the action
choice at a given time step will differ due to the differences in the state of the system. The optimal
policy is the set of actions which maximize the rewards at the end of the running time.

The task is to determine the set of policies that will effectively plan robot actions in complex
environments with uncertain robotic actions. Censoring is natural in complex environments, where
the next action depends on the system dynamics manipulation and due to the fact that many
aspects of the system dynamics may be censored, or occluded.

Reinforcement learning (RL) is a subset of machine learning which is used to solve dynamic
decision problems. RL involves analyzing possible actions, estimating the statistical relationship
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between the actions and their possible outcomes and then determining a policy that attempts to
find the most desirable outcome based on the analysis.

Finding a policy that results in a high expected accuracy and control and low expected error
from the goal is the main goal of RL. Näıvely, one could attempt to learn the transition matrices
and the reward models using the observed trajectories, and then attempt to solve the reverse
Bellman equation. However, this becomes compuationally taxing and inefficient when there is a
high dimensional state space and the relationship between the covariate parameters are confounded
or uncorrelated.

One of the most prominent tools used in developing these treatment policies is Q-learning [13].
Since the algorithm does not assume the Markov property, where it only is dependent on the previ-
ous time step, Q-learning is well suited for determining actions that maximize long term rewards.
The recursion used by Q-learning addresses the problems that arise in terms of incorporating in-
formation accumulated over time into the policy, as well as avoiding “greedy” treatments which
appear optimal in the near future, but have poor expected outcome in the long term.

Sutton and Barto consider Q-learning to be one of the most important developments in RL [11].
Q-learning utilizes recursion without needing to know the full dynamics of the world model.

In a previous paper, novel censored Q-learning and SVM algorithms were developed [5]. I will
briefly recall the results here for completion. I will then discuss their implemenation in robotic
manipulation planning.

2.1. Censored SVM. To develop an effective censored reinforcement learning algorithm we must
first have a way of estimating the unobserved covariate vectors. A censored SVM algorithm was
created to acheive this task.

LetD be the data set of n i.i.d. random triplets of right censored data. Let L : Z×Y×R 7→ [0,∞)
be a convex locally Lipschitz continuous loss function. Let H be a seperable reproducing kernel
Hilbert space (RKHS) of a bounded measurable kernel in Z. We would like to find an empirical
SVM decision function. Formally, we attempt to find the minimizer, f , of

(1) λ∥f∥2H +RL,D(f) ≡
1

n

n∑
i=1

L(Zi, Y (Ti), f(Zi))

where λ > 0 is a fixed constant, and Y : T 7→ Y is a known function. The issue arises when we see
that the failure times Ti may be censored, and thus unknown. Simply, we could ignore the censored
observations, but this has been shown to induce severe bias [12].

To avoid this bias, the algorithm that reweights the uncensored observations. It is evident that
at the time Ti, the ith observation has a probability of G(T−

i |Zi) = P (Ci ≥ Ti|Zi) of not being
censored. Thus, we are able to use the inverse of the censoring probability for reweighting [10].

Specifically, the loss function is redefined to be the random loss function Ln : (Z×T ×{0, 1})n×
(Z × T × {0, 1} × R) 7→ R by:

(2) Ln(D, (z, u, δ, s)) =

{
L(z,Y (u),s)

Ĝn(u|z)
if δ = 1

0 if δ = 0

where Ĝn is the estimator of the survival function of the censoring variable based on the set of n
random triplets in D. When D is given, Ln

D(·) ≡ Ln(D, ·). In [5] it is shown that Ln
D is a measurable

function and that the empirical SVM decision function is well defined and will converge optimally
even in censored and complex environments. Furthermore, we find that ineffeciency in estimating
the covariate vector does not lead to a severe bias in the results.

2.2. Censored Q-learning. We can find the near optimal policy π̂ in three steps. First, we
transform the problem to the corresponding auxiliary problem to deal with the variable length
treatment paths. Then, we approximate the functions {Q∗

1, . . . , Q
∗
T } using backwards recursion
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and obtain the functions {Q̂1, . . . , Q̂T }. Finally, we define π̂ by maximizing Q̂t(st, (at−1, at)) over
all possible at ∈ A, where A is the universe of all actions.

Rather than choosing the Q̂t using the standard Q-learning algorithm due to the fact that data is
subject to censoring and we have a variable length treatment path, we use an alternative recursive
minimizer as follows:

(3) argminQt∈Qt
En

[(
Rt +max

at+1

Q̂t+1(St+1, (At, at+1))−Qt(St,At)

)2 δt

ŜC(
∑t

i=1Ri)

]
where Q̂T+1 ≡ 0 and ŜC is the Kaplan-Meier estimation function of the survival of the censoring
variable, C, using the censored SVM algorithm described above.

It then directly follows to define the policies using the approximated Q-functions as follows:

π̂(st,at−1) = argmaxatQ̂t(st, (at−1, at))

A framework for solving multistage decision problems with a variable number of stages that may
be censored was studied in depth.

2.3. Manipulation under uncertainty. Manipulating objects under uncertainty is not a new
problem in robotic research. In the early 1980’s, Lozano-Péres et al. [8] considered the automatic
creation of fine robotic motions using backward chaining. An extensive summary of the research
can be found in [7].

Recent work by Dogar and Srinivasa [3] proposes manipulation of multiple objects using prim-
itive robotic actions. The planning is performed at the level of object position with no semantic
information. Monso et al. [9] proposed an environment specific POMDP approach to object ma-
nipulation. In contrast, the work that I propose is non-environment specific and can be generalized
to any type of multistage decision problem in robotics.

3. Multi-object manipulation using Q-learning

In this paper, I study the problem where robots may control and manipulate objects, or use them
in another way to accomplish some set of goals. I focus on deciding how to optimally manipulate
objects in a complex environment. Due to the complexity of the environment, only parts of the
objects can be observed by sensors. In addition to the uncertainty of the observations, real world
manipulaitons induce further uncertainty, especially when there is no model to estimate how objects
will respond to robotic actions.

Manipulation planning is traditionally consider a geometrical problem when the system dynam-
ics are known. However, when the environment is complex with unknown objects, the current
techniques often plan actions solely based on the observed environment [4]. I extend this notion by
planning on the level of semantic actions and locations, which the execution of individual actions
is then performed based on the direct positions of the objects. In addition, the algorithm I created
also models the connection of the sensor measurments to both observational and semantic models.

I now present a general Q-learning framework for modeling multi-object manipulation. I will
then go on to show the implementation in a real world robotic simulation.

In multiobject manipulation, the robot has to decide which objects should be manipulated. I
consider problems where the world consists of N objects with varying attributes. Ai is the set of
all possible actions for the ith object. Instead of forcing the robotic planning into a manageable
discrete state space as is done in approaches such as [9], I use a censored SVM method based on
the censored covariate vector that allows the algorithm to estimate complex system information
required for efficient and effective multiobject manipulation. The censored SVM techniques is
abstracted to allow for varying length covariate vectors.

The state space consists of semantic object locations, object attributes and historical data of
observations and action successes for each object. The model näıvely assumes that the objects are
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stationary and do not change their semantic location without robot action being taken; however,
the direct positions may change independently.

The observation history contains information of past observations of object attributes. Past ob-
ject attribute observations are used to compute SVM regression models to estimate the probability
of success of the subsequent action. Actions do not necessarily permanently move objects or change
their semantic location; for example, in the experiments objects can be temporarily lifted to gain
new information about the system dynamics or positions of the objects.

I assume that censoring effects the grasp probability of all objects in a similar way, but, in
addition, that each object has unknown properties that affect the grasp probability of that specific
object. For example, it may be more difficult to grasp an object that has fallen down rather than
one that is still upright. The probability of a successful grasp can be modelled as follows:

P (grasp succeeded|soccludedi , shistoryi ) = E[psuccessfuli ]1

Näıvely I can model the grasp probability as the mean of the Beta distributed random variable
psuccessfuli . However, I show that the SVM algorithm developed for determining whether the grasp
action will succeed was a more successful approach.

3.1. Experiment Setup: Moving cups. I now demonstrate how the framework can be used
to model the problem of moving cups from a table into a dishwasher as a reinforcement learning
problem. In this problem, the robot can gain more information about the attributes by removing oc-
clusions and gaining more information about the system dynamics through attempting subsequent
actions.

3.1.1. State space and actions. In addition to the grasping and observation history, the world state
also consists of semantic locations slocationi = {TABLE, DISHWASHER}, and the attributes of the cups
are {CLEAN, DIRTY}. The robot can perform three types of actions.

(1) WASH attempts to move an object from the table into the dishwasher. A successful WASH is
given a large positive reward; an unsuccessful WASH is given a smaller, but still significant,
negative reward.

(2) LIFT attempts to lift an object to gain more information about the system dynamics. LIFT
is given a negative reward that is a function of the length it takes for the action to complete.

(3) FINISH terminates the robot actions. Negative rewards are given for each dirty object left
on the table.

3.2. Simulation Dynamics. Due to the uncertainty in actions and observations, real robotic
decision are often much more complex than this simple example can show or imply.

It directly follows that the null hypothesis is that a heuristic greedy manipulation approach
is as sufficient as the censored Q-learning model (H0 : µR(Q) = µR(heuristic)). The alternative
hypothesis is Ha : µR(Q) > µR(heuristic). To test this hypothesis I experimentally compared heuristic
manipulation with the propesed reinforcement learning model. I also compare the Q-learning model
to POMDP approaches with different planning horizons. Due to the fact that experiments with a
physical robot are not repeatable I performed experiments with simulated world dynamics. Even
though I simulate world dynamics, I estimate the grasp and observation probabilities using the
physical robot arm and real observed occlusions. Morever, I estimate the occlusions and locations
of objects from point clouds captured from the Asus Xtion PRO sensor.

In the simulated dynamics experiments, I setup ten different cup configurations and their re-
spective caputured point clouds as the initial state for simulations. In these experiments, I form
a system dynamic model from the point cloud and then repeatedly sample an initial belief and
simulate the system using the probability model for 10 time steps.

1E represents the emperical expecation
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3.2.1. Q-learning implementation. The Q-learning algorithm was developed in MATLAB.
I implemented the algorithm as follows: The input is a set of point clouds obtained based on

the system dynamics described previously. First I compute the Kaplan-Meier estimator for the
survival function ŜC of the censoring variable from the observed history. Then, I set Q̂T+1 ≡ 0 and

I compute Q̂i in reverse order as the minimizer over the functions Qi(si, ai). Then the policy π̂ is

calculated from the functions in {Q̂i}.

3.3. Results. First, I examine the effect of both the sample size and the percentage of occlusion on
performance. I simulated data sets containing treatment paths of sizes. For each set of treatment
paths I considered four possible degress of censoring ranging from no censoring to 50% censoring.
A policy π̂ was calculated for every combination of the size of data set and percentage of censoring.
I repeated the simulation 10,000 times for every combination to account for the probabilistic aspect
of the algorithm. From Figure 1, it is evident that the approximation policy obtained by the
algorithm are superior than any greedy heuristic method, even if it incorporates history. I can
also see that, for all percentages of censoring, there is a direct positive correlation between the
number of observed treatment paths and the anticipated reward of object manipulation. In Table
1 I compare the speed and accuracy of the algorithms with α = 0.01.
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Figure 1. The expected reward was calculated as the mean of 10,000 repetitions
of the simulation.

Time cQL vs. POMDP p-value Accuracy cQL vs. POMDP p-value
H0 : Both equally fast 4.757× 10−7 H0 : Both equally accurate 9.89× 10−3

H1 : cQL faster H1 : cQL more accurate

Time cQL vs. Greedy Heuris-
tics

p-value Accuracy cQL vs. Greedy
Heuristics

p-value

H0 : Both equally fast 1.526× 10−5 H0 : Both equally accurate 6.19× 19−3

H1 : cQL faster H1 : cQL more accurate

Time cQL vs. Heuristics with
History

p-value Accuracy cQL vs. Heuristics
with History

p-value

H0 : Both equally fast 5.528× 10−6 H0 : Both equally accurate 3.873× 10−4

H1 : cQL faster H1 : cQL more accurate

Table 1. Statistical tests of the speed and accuracy of the algorithm in comparison
to other techniques for multioject manipulation
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4. Discussion and Conclusions

In conclusion, I presented a novel implementation of the censored Q-learning algorithm I de-
veloped for multiobject manipulation in complex and crowded real world environments. Due to
the fact that objects are occluded, or data is subject to censoring, the objects are more difficult to
manipulate. To address this problem, the censored SVM technique developed allows us to maintain
a belief about the interaction dynamics of the objects.

The experiments provide us with enough evidence to reject the null hypothesis. They confirm
that the censored reinforcement learning algorithm is better suited for multistage robotic object
manipulation. With uncertain world dynamics, the censored SVM algorithm provides us with the
ability to estimate and maintain a belief about the world dynamics. Since I employ reinforcement
learning, the robot often will perform actions that do not yield immediate reward in exchange for
more information about the objects.

Future lines of research include extending the framework to multiple robots worlking on multi-
stage multiobject manipulation. I am currently working on moving past simulations and creating an
actual robot that can employ these techniques. In contrast to geometric approaches or engineered
solutions, machine learning offers novel solutions to robotic problems that generalize to unexpected
situations and are truly autonomous.

The goal of fully autonomous robots acting in complex environments can only be achieved
through employing advanced machine learning techniques and increased sensor sophistication in
robotic research. The research presented provides a new foundation for further work towards this
goal.
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