Practical Applications of Botball Through Video Games
Marty Rand
Norman Advanced Robotics

marsedge95@gmail.com

Practical Applications of Botball
Through Video Games

Introduction

Botball prides itself on teaching real-world, practical engineering skills. As video game
development involves a mix of programming, engineering, and documentation, Botball also
teaches many concepts needed for game development. This paper details several of these lessons
that Botball teaches.

Game Background

The game made using these concepts is called Project Land Mineded' (PLM). PLM is an arena-
based first-person shooter where bullets ricochet off walls (using geometrically accurate
projectile physics), bounce to the ground, and become land mines. The entire battlefield gets
covered with mines that stay there until someone steps on one. The game doesn’t take itself too
seriously and instead focuses on having fun. Players can adjust the physics engine to be more

realistic or more over the top by changing gravity and the collision elasticity.

Programming Connection

PLM is made using Unreal Engine 3 (UE3)", written in C+
+, with added scripts written in UnrealScript™. UnrealScript
is a proprietary language made specifically for Unreal
Engine. UnrealScript is based on Java, which is based on
C++, which is based on C — the language Botball uses
most. Even though this connection is distant, Botball
programmers can understand some UnrealScript code. For
instance: (see right). This code is from the Al of the game.
The code is simply a couple of if/else blocks of code —
something many Botballers use every year. Both C++ and
UnrealScript are object-oriented. Video game development
is very suited for object-oriented languages because of the
different game objects in the scene. Botball has added C++
support in recent controller versions, keeping up-to-date
with the changing field of Computer Science.

The KISS Principle

if (CanCamp()){ //if can stay in same spot
GoalString = "Camping";
GotoState('"Camp");
return;

}

else if (LoseEnemy())

{//else if can't find anyone
WhatToDoNext();//figure out what to do
return;

}

else

{//else go back where it was
GoalString = "Stop Looking";
DoRetreat();
return;

}

The KISS principle (Keep it Simple Stupid) is so fundamental to Botball that it is included in the
acronym for KIPR — The KISS Institute for Practical Robotics™. KISS is used for all kinds of
engineering. For instance, no competent programmer uses recursion instead of a simple for loop
in C. A robotics example would be ramming a wall until the robot is straight instead of using a

mailto:marsedge95@gmail.com

touch sensor to detect when the robot hits the wall. Similarly, PLM uses timers instead of sensors
to save CPU cycles and thereby optimize the code. PLM does this when a player spawns into the
level. PLM applies a custom material to the player model. The part of code dealing with applying
the material has no knowledge of when the player actually spawned. It just uses a small timer to
approximate it. It may be a slightly worse practice, but it works just fine and there is no reason to
change it. This has the pleasant side effect of being able to ignore parts of the engine and work
around them by using these timers.

Iterators

Botball camera code often iterates through the first n camera blobs to find the appropriate one
and then performs some kind of operation using that blob. Just as cameras have an arbitrary
number of blobs to check, PLM iterates through all PlayerController instances to find the local
player, and then allows that player to control the menu.

//PLM
foreach WorldInfo.AllControllers(class'MarsPlayerController', Contr)
{//iterate through all players
Contr.GetPlayerViewPoint(AimLocation, AimRotation);
//get direction player is aiming
AimDirection=vector(AimRotation);
//calculate of player is looking at a button
SeenActor = Trace(HitLocation, HitNormal, AimLocation + AimDirection ¥ MaxDistance, AimLocation, true);
//if player is looking at a button
if(SeenActor != None && SeenActor.IsA('Button_Key"))
{
MarsGameReplicationInfo(WorldInfo.GRI).ActiveKey = Button_Key(SeenActor);//activate the button
return true,

}

//Botball
while(found==0 && seconds() < (timelnit+timeout))//while no object found and within time limit

{
depth_update();
depth_scanline_update(row);
if(get_depth_scanline object count() > 0)//if objects exist

for(objCount=0;0bjCount<get depth_scanline object count()&&found==0;0bjCount++)
{//iterate through all objects looking for the correct kind
if(get_depth_scanline object center x(objCount) > (column - error) &&
get_depth_scanline object_center_x(objCount) < (column + error) &&
get_depth_scanline object center z(objCount) < maxDepth)
{//if the correct kind is found, break out of loop
found=1;
printf("found\n");

}

msleep(15);
}

Debugging

One of the most important parts of programming is debugging. Botball mainly uses printf to
display information on the Link's screen. Since a game is entirely virtual, UE3 has a debug
window that displays various information about run-time errors, what the engine is doing, and

(13 2

user debug. In UE3, the command “log(*...”); displays “...” (without the quote marks). UE3 also
has the ability to overlay arbitrary information onto the Heads-Up-Display (HUD). This allows
the programmer to watch information as the game plays out without having to look at a dedicated
debug window. UE3 can also display any object's name in the scene. This is useful for figuring
out if there is a duplicate, if the program is accessing an object that doesn't exist, etc. This ability
exceeds the Link's because Botball engineers often make the Link's screen difficult to clearly see
while the robot it running — using it as a counter-weight, hiding it under a basket, making a giant
arm raise and lower in the way, etc.

CAD/3D Modeling

Some of the more experienced engineers build their robots in SolidWorks" before using real
Legos. This lets them prototype different design strategies without having to dig up all the
needed Legos. PLM uses 3D models for all geometry in the game. The process is similar
between CAD modeling and 3D modeling. In some ways, SolidWorks is better than Blender"
(the 3D modeling tool T use). SolidWorks makes it easy to “drill” a hole into a mesh. Blender
does not make that as intuitive.

Project Documentation

All Botball teams must keep detailed documentation of what they have done, failed ideas, etc.
This is a good practice in any large project — including game development. A common theme is
to have a design document that details everything the game will do. In other words,
documentation for the game.

Documenting Code

One of the first things to skip when running out of time is documenting code. Those pesky
comments eat into a team's precious last week before competition. Still, documentation is critical
to having effective and reusable code. UE3 was not made by me, nor do I have full source code.
As such, its creators must document it well enough for users to understand what is going on. This
took the creators a large amount of time, but it was necessary. Real-world programming projects
need proper documentation to survive the new intern and disgruntled client. Documentation is
critical to having fully functional code. Botball is a great way to get started in that area of
programming.

Conclusion

While it is impossible to list every advantage Botball gives for game development, I hope this
list gives a useful introduction to the similarity in skill sets.

ii
iii
iv

vi

Martion Laboratories — http://www.martionlabs.com/

Unreal Development Kit — https://www.unrealengine.com/products/udk/
UnrealScript — https://udn.epicgames.com/Three/UnrealScriptHome.html
KIPR — http://www.kipr.org/

SolidWorks — https://www.solidworks.com/

Blender — http://www.blender.org/

https://www.solidworks.com/
https://udn.epicgames.com/Three/UnrealScriptHome.html
https://www.unrealengine.com/products/udk/
http://www.martionlabs.com/
http://www.blender.org/
http://www.kipr.org/

	Introduction
	Game Background
	Programming Connection
	The KISS Principle
	Iterators
	Debugging
	CAD/3D Modeling
	Project Documentation
	Documenting Code
	Conclusion

