
ARTeMIS: An Autonomous AR.Drone Project
Renner Brown and Alexander Eggers
The Episcopal School of Dallas

ARTeMIS

An Autonomous AR.Drone Project

 This year, the two of us along with a third student, Michael, took an advanced computer
science course at ESD. The main focus of the course was a project of our choice, as long as it
was approved by our teacher, Deb Goudy. After some thought, Michael and Alexander, who are
both also on the school’s rowing team, were inspired by a remote-controlled GoPro quadcopter
and suggested we make an autonomous drone that could follow and film boats during practice.
This would allow an easy way to critique and improve form without the coach having to watch
the boat the entire time. Initially, we came up with a bunch of ideas-- it could fly over water and
would have pontoons for emergency landings, it would be able to fly back to shore automatically
when battery ran low, and we even thought about making a charging dock so that it could land,
charge up quickly, and head back out when it was ready. Of course we were getting a bit ahead
of ourselves, and after further thought, we decided to focus on making a drone that could simply
follow a GPS tracker. And after a class of brainstorming, we decided to name the project
ARTeMIS, an acronym for Aerial Reconnaissance Tetrarotor Mobile Intelligent System.

 During our initial project planning, we identified a few aspects of the project that we
thought would be most challenging to allow us to better focus our efforts. Initially, we thought
that creating working tracking algorithms would be difficult. We also were concerned we would
be limited by the drone’s onboard processing power, which led us to utilize external hardware for
processing of GPS data and tracking calculations. Finally, with extra hardware added, we were
concerned that the weight of these components would be a serious concern. All these concerns
affected our initial hardware decisions, but as it turned out, they were the least of our problems.

 Throughout our work on ARTeMIS, Mrs. Goudy required that we document our
decisions, progress, setbacks, and any problems. Our main form of documentation took the form
of a blog in which we wrote posts and posted pictures and diagrams throughout the project. To
supplement this blog, we uploaded a few videos to YouTube and posted pictures to an Imgur
account. We also made charts and graphs in Google Drive to show pros and cons of different
hardware options, to keep a log of test flights, and to generate a testing protocol to follow to
prevent damaging the hardware. By creating documentation we were forced to organize our
thoughts in a way that was easy to refer to when we needed to remind ourselves of any aspect of
the progress. However, as we neared our end-of-year deadline for finish the project, our
documentation became much less thorough since we were spending all our time working on the
system itself.

 The first major hardware decision we had to make was what kind of quad copter we
wanted to get. Our selection was fairly obvious and unanimous. We chose the Parrot AR.Drone
because of its user-friendly design, its popularity, and its widespread use in DIY autonomous
projects, which meant that it already had a wide technical support base on the internet. Also,
because of its use in the KIPR Autonomous Aerial Robot Game, we figured we would have
information and support through our friends and contacts within KIPR if we needed it. We chose
the AR.Drone 2.0 over the original AR.Drone simply because it is newer (perhaps not the best
choice). We also got the special “power edition” from Amazon because of its packaging with

spare parts and more powerful batteries that would offer an increased flight time of around
twenty minutes.
 With the drone purchased and having done plenty of preliminary “testing” with the phone
app, we had to figure out how to control the drone autonomously. We decided that a good step
toward this goal would be to learn how to send flight commands from one of our laptops, a
process that could later be applied to whatever external processor we used on the drone. We were
wary of hardwiring into the drone’s board and risking frying the electronics, so we decided to
communicate with the drone via Wi-Fi, much as the iPhone app does. After some research, we
thought our best option was a JavaScript platform called node.js. With JavaScript already
designed for web-based applications, an open-source API for node.js called NodeCopter offered
a simple way to communicate with the drone over Wi-Fi through either live commands or pre-
programmed JavaScript.
 Next, we had to select our external processing hardware. Confronted by a plethora of
microcomputers and DIY electronics boards, we created a set of criteria to narrow down the
options and make a selection. Because we wanted to communicate with the drone over Wi-Fi, we
wanted a board that had built-in Wi-Fi. Also we wanted the ability to run node.js, since it offered
such easy communication with the drone. Finally, we wanted the board to have an easy way to
interface with external hardware such as GPS sensors. These criteria led us to the pcDuino v2, a
small board with a built-in Wi-Fi module, USB, HDMI, Arduino headers and functionality for
external sensors, and a full Linux operating system. Finally, we selected a GPS sensor, choosing
the Parallax PMB-688, which is a common choice for those using Arduino-based GPS projects.

 Our project faced many problems throughout its slow and often backwards progress.
Along the way, we fried multiple electronic components including a pcDuino, a GPS sensor, and
even at one point the main board on our AR.Drone. Luckily, through incredible financial support
from Mrs. Goudy and ESD, we were able to quickly replace these parts. Most of the other
problems that we faced came from the pcDuino. It is a fantastic board for some things but for our
purposes, it was a nightmare. It had limited storage capacity, so we often had trouble installing
the necessary software and development kits. Also, we had extensive trouble with the serial
communications through Arduino pins, making it very difficult to use the GPS sensor. In
addition, some Arduino software libraries, primarily SoftwareSerial, a library for utilizing
standard digital pins as Serial ports, had serious compatibility issues with the pcDuino. Finally,
we simply could not find a way to install node.js on the pcDuino in a form that was compatible
with the software libraries needed for communication with the drone. After three quarters of the
school year beating our heads against these problems, we finally decided to give up the pcDuino
and explore a different option.
 Because of all the problems with pcDuino, we decided to switch to Arduino, a platform
with which we already had some experience. Instead of trying to work with Wi-Fi
communication again, we decided to switch to a hard-wired approach that would communicate
directly with the drone through the serial debug port on its main board. We quickly found
MiruMod, a very common modification to the AR.Drone that allows it to communicate with an
Arduino board without Wi-Fi. Although MiruMod is intended primarily for using a radio
controller with the drone, it can also be used in conjunction with GPS. After wiring the Arduino
into the drone and toying around with the software for a week or so, we had the drone taking off
and reading GPS coordinates from the attached sensor, more progress than we had made the
whole year with pcDuino. To create a tracking beacon for the drone to follow, we got another

Arduino Uno board and GPS sensor, and equipped the beacon and the drone’s Arduino each with
an XBee, a radio frequency communication module. These allow the tracking beacon to transmit
its GPS coordinates to the board on the drone, where they are compared to the drone’s
coordinates to create flight commands for the AR.Drone.

 The system now consists of two Arduino Uno boards, two PMB-688 GPS sensors, two
XBee modules, a SparkFun bidirectional logic level converter which simply shifts the voltage
between the Arduino (5V) and the AR.Drone(3.3V), two wireless proto shields—Arduino
expansion boards that allow mounting of the XBee modules and soldering of any external wires
into a clean, permanent circuit—and of course a Parrot AR.Drone 2.0 (with a replaced main
board).
 The tracking beacon reads GPS coordinates from its PMB-688, parses out the necessary
North and West longitude and latitude values and its speed from the strings of information, and
sends them over the onboard XBee module to the board on the drone. The XBee on the drone’s
Arduino board receives the coordinates and the Arduino compares them to coordinates from its
own GPS sensor. Because the drone is operating over only short distances, we consider the
longitude and latitude coordinates as if they are one a standard Pythagorean plane. This allows
the drone to use simple trigonometric calculations to adjust its heading to face the beacon and
then to adjust its forward speed, going faster or slower until it reaches a desired following
distance and then matching it to that of the object it is tracking.
 The tracking isn’t perfectly smooth or accurate for a few reasons. First there are
considerable latencies in receiving GPS coordinates and the communications between the beacon
and drone. Also, because of packet loss between the two XBee modules, we had to create a
system for checking the values that involves taking multiple readings and creating a composite.
This allows the coordinates to update approximately once every second, which is far from ideal,
but we wouldn’t want an errant value to send the drone flying off towards Canada.
 Although the project isn’t nearly as successful as we initially envisioned—it definitely
isn’t ready to fly over water and record rowing practices—it has still offered an incredible
opportunity to develop our electrical engineering, computer science, and problem-solving skills.
We got to work with C, C++, JavaScript, Linux, and Arduino, and we even got some practice in
circuit design and soldering. Most importantly, we learned crucial project management skills
from our failures. We learned that extensive initial research is incredibly important to any
successful project, and that if you are facing a seemingly impossible problem a better alternative
to trying to solve it is avoiding it entirely. We also learned that if you don’t know much about
what you are working on, you should find someone who does rather than searching around
yourself for information.

Of course, all of this would not have been possible without the help and support of Mrs.
Goudy and the Computer Science Department and the support of ESD as a whole. Therefore, we
would like to extend to them our deepest thanks for allowing this opportunity to expand our
knowledge of Computer Science and to attain some real-world project management experience.

Further Reading:
Blog: http://esdartemis.wordpress.com/
YouTube: https://www.youtube.com/channel/UCF4SKWay996ljimaE_CAEwA
Imgur: http://esdartemis.imgur.com/all/

http://esdartemis.wordpress.com/
https://www.youtube.com/channel/UCF4SKWay996ljimaE_CAEwA
http://esdartemis.imgur.com/all/

