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Real-Time Navigation with the Lee Algorithm 
I. Abstract 

 
To find an unobstructed route in an unplanned autonomous robotic game, a real-time 
navigation system is needed. Our team improved the Lee algorithm to create a navigation 
system that implements the concept of dynamic blockages. After testing, this navigation 
program has proved to be beneficial.  
 
II. Introduction  

 

When a robot is programmed to move from Point A to Point B, programmers generally use a 

hard, nonflexible program like “go forward five units, turn right, go forward ten units.” This 

rigid code does not consider unexpected obstacles on the field. Some tournaments allow human 

interaction with the robot, so the team can pull the robot out of an unexpected situation. However, 

Botball is an entirely autonomous game, and human assistance is not allowed. This means that a 

robot must have an intelligent navigation system, like a human. Our team has created a fluid, 

versatile navigation program that can move the robot from Point A to Point B, even if 

unexpected situations arise. 

 

III. Fundamental Concepts  

 

The basics of our navigation program come from the Lee algorithm [1]. The Lee algorithm finds 

the shortest path between two predetermined points. Based on this algorithm, we have created a 

navigation system that utilizes propagation and back-tracing in a game field with blockages. 

 

The Lee Algorithm is an exhaustive search algorithm. It will find a path between two points on a 

coordinate grid, so long as such a path exists [1]. Through wave propagation, each coordinate is 

assigned a value. The starting point has a value of 0. The surrounding points are assigned values 

of 1. The points around the former points are assigned values of 2, and so on. See Figure 2 for 

an example. 

 

The playing field is divided into a 16x16 grid map, where each grid is 6x6 inches.  The starting 

position, target position, known hard-blockages, and unknown dynamic blockages are labeled 

with A, B, H, and D respectively. In programming, we use negative values for these labels to 

distinguish them from the positive values in wave propagation. Figure 1 shows an example of an 

initial grid.  
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The program begins propagation, utilizing the Lee algorithm. Each coordinate point north, east, 

south, and west of the starting point is assigned a value of one greater than the original point.  

The value represents distance from the starting point. This continues until the entire grid is filled. 

Note that the propagation does not override any grids with A, B, H, or D. Figure 2 shows an 

example of the wave propagation. 

 

 

 

Once the map is filled, the program begins back-tracing from the predetermined target point B by 

finding the lowest value in the four grids surrounding it. A grid is chosen, and its value is 

changed to P. From this new grid, the program then checks its surroundings again for the next 

lowest number. If there are multiple grids with the same lowest value, priority is given to the grid 

that maintains the same direction. As the program decides its next grid, it replaces the current 

grid with the label P to indicate the path chosen. This process continues until the shortest path is 

traced to the starting grid A, as shown in Figure 3. 
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Figure 1: This is an initial marking of a map before wave propagation. A is the starting point. B 

is the target point. H represents a hard blockage. D is an example where a dynamic blockage may 

be encountered. 

Figure 2: This map shows how wave 

propagation works. It begins with 

grid A in the middle and works 

outward until every grid is assigned a 

value. 



 

 

 

 

 

 

 

 

 

 

 

IV. Our Innovations 

 

Our main innovation is the addition of dynamic blockages to the navigation map. It is a real-time 

navigation system, because we can add blockages as we encounter them. 

 

As the robot moves around the game field, it keeps track of its exact coordinate on the grid. It 

also records the movement of each turn made. As the robot moves along its path, it may 

encounter unexpected obstacles, such as the other team’s robot(s). If this happens, the robot 

knows the exact location of the unexpected obstacle. Upon detecting it with bumpers or touch 

sensors, the robot stops to avoid pushing the dynamic blockage into multiple grids. At the same 

time, it places a dynamic blockage in this grid location.  

 

In the program, it replaces the current grid with a label D. The program repeats the wave 

propagation with the modified map. It finds a new path to its original destination, given the new 

blockage. This is very effective, because the robot is not disabled for the rest of the game simply 

because of an unexpected obstacle. The program is repeated if another dynamic blockage is 

encountered. This makes the robot tolerant of blockages in unexpected situations. 

 

V. Experimental Results 

 

Figure 4 is an example of an initial map. Figure 5 is an example of a map after completing 

propagation. Figure 6 is an example of a map that has created its route.  

 

 

 

 

 

 

 

 

 

 

 

 

 

4 3 P P B 

3 2 P 2 3 

2 1 A 1 2 

3 2 1 2 3 

4 3 2 3 4 

Figure 3: This diagram illustrates back-tracing. It 

starts from the target at B in the top-right corner and 

back-traces until it reaches the starting grid at A. 

The chain of grids marked P provides the path from 

A to B. 
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Figure 4: In this initial 

map (outlined in the red 

box), the starting position 

is located at (1,1) and is 

marked by A. The target 

position is located at (10, 

6) and is marked by B. 

The numbers outside the 

red box are coordinate 

references. 

 

Figure 5: The possible 

paths are marked by 

increasing numbers 

until the target point 

(ex. 1 to 2 to 3 to 4 

until B is detected). 

Obstructed grids are 

marked with H. 
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VI. Further Works 

 

The real-time navigation program has aided us greatly, but some improvements can still be 

made. There are a two known issues.  

 

Even though the navigation program always finds the shortest path, it is not always the “best” 

path. Figure 7 exhibits a such a situation. The shortest path, represented in yellow, is only five 

units long. The longer path represented in red is seven units long, but is actually more effective. 

The yellow path requires the robot to turn three times before reaching its destination. These turns 

cost time and are not necessarily perfect 90 degree turns, resulting in slight error. The red path, 

though longer, is more effective because it requires only two turns. We continue to develop our 

program to find the best path by assigning a cost value to turns. This allows us to make the trade-

off between path length and turns, ending up with the best path. 

 

 

 

 

 

 

Another known problem involves mechanical tolerance. When the robot moves, it gains 

momentum. If the robot stops abruptly, the momentum carries it forward more than planned. 

This additional displacement can create problems later as it accumulates, eventually causing 

navigation failure. For example, if a robot were programmed to move forward and stop at a grid, 

it may move forward 1/5 grid more. If this were repeated five times in the same direction, the 
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Figure 7: This is an example in which 

the shortest path is not the best path. 

Figure 6: The robot 

will follow the path 

marked by P, the 

shortest path. New 

blockages are 

automatically 

added if the robot is 

interrupted during 

its run and the robot 

will automatically 

recalculate the path, 

as explained in 

Section IV.  

 



robot would have moved one full grid extra. The robot is no longer in the correct grid, so the rest 

of the program becomes irrelevant. If this additional movement were consistent, we could 

compensate for it in the program. Unfortunately, we observed that it is not. To alleviate this 

problem, we will change our move function to accelerate and decelerate gradually. This will 

result in less jerky stops and less momentum, allowing the robot to remain in its desired grid. 

 

The next improvement to the navigation system is the application of the ET sensor, which is a 

range distance sensor. It detects distance to an object by sending and measuring the reflection of 

a modulated frequency IR beam. We use the ET sensor to scan for the presence of blockages, the 

size of said blockages, and distance from the blockage. With the ET sensor, we can detect 

dynamic blockages without colliding into them and potentially disturbing the robot’s position. 

Using this information, we could place dynamic blockages on our map and find an effective path 

more quickly.  

 

We also hope to apply this navigation system into the third dimension of height. We have added 

a third layer in our navigation program, but we have not yet implemented it. We hope this would 

improve accuracy when using an arm to grab objects that are not on the ground. 

 

VII. Conclusion  
 

Using the Lee algorithm, we have designed a program that aids in robot navigation. Besides the 

basic navigation function of finding the shortest path on a map with preset blockages, we have 

improved it to be more humanlike so that it can respond to unexpected situations. When the 

robot bumps into an object, it sets its current location as a dynamic blockage and finds a new 

route to its destination. This has been experimentally proven to be very effective. In the future, 

we would like to improve the program to find the “best” path instead of the shortest, mediate 

start-stop problems, use the ET sensor, and apply this precise-movement program to the third 

dimension.  
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