
Virtual Touch Sensors
Jeremy Rand
Team SNARC (Sooners / Norman Advanced Robotics Coalition)
jeremy.rand@ou.edu

Virtual Touch Sensors

1 Introduction
Touch sensors are a standard element of a Botballer’s toolbox. But what if I told you that in
many cases, the same functionality provided by touch sensors can instead be provided without
any mechanical complexity, using only the same hardware that Botballers typically use for dead-
reckoning? It’s true, and I’ve been doing exactly that since 2008. This paper will discuss the
technology and history of Virtual Touch Sensors, explain which implementations are superior,
and offer tips for practical applications in Botball today.

2 The Theory
Typically, touch sensors are used to detect a collision. This could be a collision between the
robot and its environment, or a collision between components of the robot. In both cases, certain
built-in sensors may be able to detect this collision, even if no touch sensor is installed.

3 Motor Current Sensing
Current sensing is one of the oldest Virtual Touch Sensors in Botball. When DC motors stall
or experience heavy load, they quickly begin consuming a high amount of current (much higher
than in light load). The Xport Robot Controller (XRC) and Xport Botball Controller (XBC),
which was used in Botball between 2005 and 2008, was capable of reading the current draw of
each motor, and could use this to detect the load. XRC/XBC developer Charmed Labs produced
an excellent demo video of the XRC wandering around a room, without any touch sensors [1].
When the XRC detected a heavy load on its drive motors, it would conclude that it had hit a wall,
play an “Ahh!” or “Ouch!” sound effect, and back away.

The libxrc C++ function for accessing the current draw of a motor is:

short CAxesOpen::GetCurrent(unsigned char axis);

Users of Interactive C can access this function through the XBC IC Firmware Student Edition:

// Returns current draw for motor, unknown units
int get_current(int m)
{

return(callml(1581, m));
}

The XRC/XBC updates this data every 5ms, and current draw doesn’t oscillate very much,
making this an excellent method of measuring load on a motor.

The “baseline” value for GetCurrent varies based on your robot’s construction, but simple testing
will usually show a huge difference between normal driving and driving into a wall. It is often
possible to also use this to detect unusually high loads which haven’t completely stalled a motor,
e.g. detecting that the robot is traveling up a hill.

Unfortunately, motor current sensing circuitry was not present in the CBC Botball Controller,
and so far hackers have not found any such feature in the KIPR Link. The dated CPU speed and
extremely limited availability of the XRC/XBC means that most Botballers will not be able to
use this type of Virtual Touch Sensor (and certainly not in Botball tournament settings, where
only the Link is legal).

4 PWM Power
The XRC/XBC, CBC, and Link all support PID motor control (e.g. mav()). PID control attempts
to keep motors running at a constant velocity by varying the PWM duty cycle (power) given
to the motor. If a motor encounters heavy load while under PID control, the PWM power will
increase as the PID controller tries to maintain the requested velocity. This can be used to detect
the increased load.

4.1 XRC/XBC
On the XRC/XBC, libxrc’s function for this is:

int CAxesOpen::GetPWM(unsigned char axis);

XBC IC Firmware Student Edition supports a callml for this function:

// Returns PWM output for motor, range = [-255,255]
int getpwm8(int m)
{

return(callml(1580, m));
}

4.2 CBC
On the CBCv2, the function is available as well:

int getpwm(int motor);

However, the CBC simulator does not support getpwm, so the following hack is necessary when
compiling with KISS-IDE:

// Insert this at the top of your program to make KISS-IDE work with getpwm
#ifndef __arm__
int getpwm(int motor) {return 0;}
#endif

4.3 Link
At the moment, getpwm is not implemented on the KIPR Link’s user libraries. However, I
suspect that a reasonably competent hacker could add a working implementation, as there is no
hardware limitation involved. Any takers?

4.4 Other Notes
Because PID controllers maintain average velocity over a few seconds but not necessarily
instantaneous velocity, the PWM power can vary widely in normal operation, even sometimes
hitting the maximum value of 100%. As a result, GetPWM is less robust as a Virtual Touch
Sensor than GetCurrent. However, CBC and Link users don’t have the luxury of choosing, so
GetPWM is a useful tool to master. A particularly useful technique is to average the GetPWM
results over time, which improves accuracy (at the expense of introducing a delay).

GetPWM can be helpful as a diagnostic tool as well. Have you ever noticed that if you try
to mav() at too high a speed, your robot will start drifting away from the straight-line path
you intended? This is because mav() will max out your motors at 100% if it cannot reach the
requested velocity, which eliminates the benefits of PID control. Contrary to popular myth,
1000 ticks/sec is not the “maximum safe speed”; the maximum speed depends on the robot’s
mechanical design. So how do you figure out the maximum safe speed? You can find it by
monitoring the GetPWM output from the drive motors. If both motors are dipping below 100%
regularly, your speed is safe and you can try to increase the speed. If either motor is stuck at
100%, your speed is unsafe and you should decrease the speed. You want the highest possible
speed which allows both motors to dip below 100%. (Even if the motors sometimes hit 100%,
that’s fine, as long as they also dip below 100% at times.)

5 Accelerometers
Collisions with walls produce strong accelerations, which can be detected by the accelerometers
in recent Botball controllers.

On both the CBC and Link, the functions accel_x(), accel_y(), and accel_z() will spike when
a collision occurs in the corresponding axis.

Accelerometers differ from GetPWM and GetCurrent in that accelerometers only can detect the
collision event. After the robot has come to a stop, accelerometers will no longer detect anything
out of the ordinary. GetPWM and GetCurrent will continue to detect a high motor load after the
robot comes to a stop, until power to the motor is switched off.

6 The iRobot Create
The iRobot Create Open Interface allows access to a number of useful variables which can serve
as Virtual Touch Sensors. For example, these could be used to simulate a rear bump sensor.
Unfortunately, these functions are unimplemented on the Link, although a competent hacker
should be able to fix this. For more details, consult the iRobot Create manual.

6.1 Motor Overcurrents
The CBC function get_create_overcurrents() returns a bitfield, with each bit indicating
whether a motor has hit its current limit. Stalled Create motors typically will show up as a 1.
According to the Create manual, the bits are, starting with the least significant bit: LSD1, LSD0,
LSD2, Right Wheel, Left Wheel.

6.2 Battery Current Flow
Motor overcurrents are useful when you want to distinguish between different motors, but
they are digital rather than analog. When you want an analog reading, the CBC function
get_create_battery_current() returns the current flowing into or out of the Create’s battery.
(The value will be negative under normal operation; positive values indicate that the battery is
charging.) When a robot is stalled (e.g. due to a collision), a much higher amount of current is
pulled from the battery than under standard conditions.

7 Conclusion
Virtual Touch Sensors provide an excellent software alternative to hardware touch sensors.
Although the Link’s user libraries do not currently support some of these features, this will most
likely improve, either due to work by KIPR or by hacking. For teams which prefer software
solutions over hardware solutions, or who are just worried about a touch sensor falling off,
becoming unplugged, or otherwise failing, Virtual Touch Sensors may be the ideal solution.

I can be reached at the Botball Community [2]; feel free to stop by if you have any questions
about this paper. Happy Sensing!

References
[1] Charmed Labs. Wander. http://www.charmedlabs.com/index.php?
option=com_docman&task=doc_download&gid=12&Itemid=44 , 2006.
[2] Botball Youth Advisory Council. Botball Community. http://community.botball.org , 2013.

