
A Look Inside the KIPR Link
Braden McDorman, Joshua Southerland
KISS Institute for Practical Robotics, University of Oklahoma

bmcdorman@kipr.org, southou@gmail.com

A Look Inside the KIPR Link

1 Introduction

The KIPR Link (herein referred to as just “The Link”) is the fifth generation educational
robotics controller used in the Botball robotics competition. The Link is also the first robotics
controller designed from the ground up for Botball. Since the Link runs a full linux kernel and
is completely open source, it is a perfect platform for modification and experimentation by
more advanced users. It is often difficult and intimidating, however, to approach a complex
software system such as the Link and begin tinkering. As such, this paper hopes to serve as
a system overview and component guide for the curious and ambitious user that wishes to
modify the Link for their own purposes.

This paper also features an accompanying website (http://bmcdorman.github.
io/link) with guides, links, and instructions. Parts of this paper will assume that the
reader is familiar with this website and its instructions.

1.1 Disclaimer

Modifying the Link’s firmware can lead to system instabilities and possible bricking. While
the Link has been designed to be somewhat resilient to system tampering, no guarantees can
be made to any given modification’s safety. That said, this paper’s accompanying website
provides documentation for un-bricking any Link manually. Manually un-bricking a Link
will, however, require opening the Link’s case and will void your warranty.

2 Hardware Overview

While this paper is primarily aimed at understanding and modifying the Link’s software, a
basic understanding of the Link’s hardware is essential. A basic and non-exhaustive compo-
nent and communication graph for the Link is presented in Figure 1.

1

http://bmcdorman.github.io/link
http://bmcdorman.github.io/link


USB Controller

CPU

FPGA

PSP

USB Micro

Speaker

BackEMF ADC

I2C

LCD

Motors

Servos

IR Emitter

3-Axis AccelerometerI2C

Wi-Fi Card

Input ADC

I2C

Mass Storage

Mouse
Keyboard

Camera

Touchscreen

Side Button

Monitor / TV

HDMI

Digitals

Analogs

Serial Port

Battery Voltage

IR Receiver

Figure 1: Hardware Overview of the KIPR Link

The Link features an ARMv5te CPU and a Spartan 6 FPGA. Both of these chips work
in tandem to enable all of the functionality of the Link. The Link also features two USB
host ports for accessories and external mass storage devices. A TTL serial port was added
for connections to robot platforms like the iRobot Create.

2



2.1 The Spartan 6 FPGA

A FPGA, or Field-Programmable Gate Array, is an integrated circuit that can be pro-
grammed to perform highly parallel and fast custom logic. FPGAs can be orders of magni-
tude faster than CPUs for certain types of operations, but are not designed to handle the
sequential logic that a CPU would normally perform.

The Spartan 6 FPGA communicates with the CPU via a PSP (programmable serial
protocol) bus. PSP is a more general form of SPI, and the parameters chosen differ from
SPI in that the clock signal (26MHz) is continuous. This was a requirement because the
PSP clock is also used by the FPGA to drive its many clocks (up to 208MHz). The FPGA
stores 46 different registers allowing the user to retrieve information such as analogue sensor
voltages, or control peripherals such as the motors.

The FPGA uses many modules[1] to perform its duties. Two modules provide I2C and
PSP communication capability. PWM modules exist for modulating servo and motor control
signals. A “quad motor” module is used in order to control the states of the motors (forward,
reverse, brake, idle). Modules also exist which automatically update the ADC and BEMF
sensed values. Finally, there is a module which provides HDMI output. These modules are
mostly running in parallel, since a FPGA is capable of executing many operations at the
same time.

Unfortunately the FPGA is more of a hindrance than a benefit in the current version of
the Link. The FPGA was originally added to mediate fast vision processing like that of the
XBC’s. Using a USB camera, however, means that the cost of transporting the image data
to the FPGA is more expensive than just doing the computation on the CPU. To realize the
performance the XBC enjoyed, the camera would need a direct (and preferably non-USB)
connection to the FPGA.

3 The Software Stack

The Link’s full software stack is composed of hundreds of libraries, executables, and con-
figuration files. Fortunately, many of these are not entirely relevant to the discussion of
the Link’s software components. In this section I will enumerate the important libraries
and executables to understand, provide notes on their implementation, provide examples of
their usage. This paper’s website also goes over “modification checklists” that can be used
as guides for certain types of system modifications. Figure 2 shows connections between
various components of the Link.

3



Communication Sub-System

Jack's PC

Jill's Mac

Program Sub-System

Recovery Sub-System

KISS IDE

KISS IDE

botui

libkovan

libpcompiler

libkar

user program libkovan

kovan-serial

libkovanserial

libpcompiler

libkar

dbus
kovan-kmod Kovan FPGA Software

PSP

libkovanserial

libkovanserial

TCP

USB

UDP

UDP

kovan-recovery

Figure 2: Software Overview of the KIPR Link

The components listed below are collectively referred to as the KISS Platform. Almost
every library in the KISS Platform is used seamlessly across the Link, KISS IDE, and the
computer targets for KISS IDE. As such, keep in mind that the Link is a piece of a much
larger software architecture spanning several platforms, protocols, and running machines.

3.1 libkovanserial [2]

libkovanserial is the unified network and USB communication protocol for the Link and
KISS IDE. libkovanserial is divided into three layers:

1. “Transmitters” are back-ends that implement a specific communication mechanism,
such as TCP/IP sockets or USB comm ports. Security is not handled on this layer.

2. The “Transport Layer” handles packet creation, checksumming, and a basic ACK/resend
mechanism for non-reliable protocols such as serial communication ports. Session-level
security is defined on this layer.

3. The “Protocol Layer” helps facilitate protocol-level communication with the KIPR
Link. This is intentionally left as a somewhat leaky abstraction. User password security
is implemented on this layer.

4



3.1.1 Authentication Handshake

libkovanserial uses XOR encryption with a mutual shared session key that is negotiated
during handshake. XOR encryption is notoriously insecure with plain text, but the use of
random data paired with cryptographically secure data makes normal XOR encryption attack
vectors useless. Since the session key is a pseudo-randomly generated 512 bits and sessions
are short lived, cracking the session key with brute force is unlikely. libkovanserial also
goes a step further and fills empty space in packets with pseudo-random bytes. This prevents
sniffers from detecting the key using zeroed-out sections of packets. This handshake method
guards against man-in-the-middle attacks and other sniffers by XOR encrypting the session
key during transmission using a private but mutual piece of information: sha1(password).
Since the session key is 512 pseudo-random bits and the SHA1 key is a cryptographically
strong hash, decoding either piece of information is unlikely. A new session key is generated
with every high-level command to the Link, so a session key does not remain valid for more
than a few seconds.

3.1.2 Handshake Example

A typical handshake looks like this:

1. Ask the server if it requires authentication. If no, finish. If yes, goto 2.

2. Send the server our password’s MD5 hash.

3. Check if authentication was successful. If no, prompt user for new password and goto

2. If yes, decrypt the session key using our password’s SHA1 hash and finish.

3.2 The kovan-serial Daemon [3]

The kovan-serial daemon mediates all incoming connections to the Link over USB and Wi-
Fi. kovan-serial is simply a multi-threaded front-end for the libkovanserial, pcompiler,
and libkar libraries. Since kovan-serial is best understood in terms of the libraries it uses,
I will not delve any deeper into its description.

3.2.1 Notes on Using the USB Micro Port

The kernel driver used for the USB Micro port on the Link (otg serial) is unfortunately
very buggy with the Link’s hardware. If the USB cable is ever physically disconnected and
then subsequently reconnected to the Link, the kernel driver enters an error state that can not
be directly detected. Attempting to read or write data while in this error state will eventually
lead to the kernel driver locking up, which can not be fixed without power cycling the device.
After much experimentation, it was discovered that this error state can be indirectly detected
by attempting to write an array of size zero to the open USB file descriptor at semi-frequent
intervals (kovan-serial checks every two seconds). If write fails and sets errno to EIO,
close the file descriptor and re-open it. It should be noted that read will not return any
error other than setting errno to EAGAIN (An error that means there was no data ready to
read, but that the connection is still good), even though attempting to read once the error
state is entered could eventually result in the kernel driver locking up.

5



3.3 libkovan [4]

libkovan is the most important library on the Link. It is designed to implement and/or
expose every piece of functionality a user would expect from a robotics controller. This
includes, but is not limited to:

� Motor actuation

� Servo actuation

� Camera perception

� AR.Drone communication

� iRobot Create communication

� High-level threading routines

� Simple key/value configuration files

� Data collection and export

� Utility functions

libkovan is written in C++ and exposes a C++ API and a C API. Since the C API is
intended for simple use cases, it does not expose all of the functionality of the library. For
example, it is possible to open two cameras simultaneously using the C++ API. Exposing
similar behavior in the C API would greatly complicate function signatures and documen-
tation. As such, it is recommended advanced users wishing to get the most from their
device use the C++ API. Under the hood, libkovan works by queueing commands to be
written out to kovan-kmod. Once commands are written, libkovan waits for a state re-
sponse from kovan-kmod containing updated sensor and system information. By default,
commands are flushed as a result of every pertinent libkovan function call. This behavior
can be modified and controlled, however, using the set auto publish(int) and publish()

library functions.
libkovan is also written to be bindable to other languages, such as Java, Lisp, and

Python. As such, the C API attempts to avoid complex data types, memory allocation
routines, and pointers (which may not be available in the bound language).

Some of the functionality of libkovan can be easily used on certain non-embedded com-
puters. For example, it is possible to use libkovan for AR.Drone control, data logging,
threading, and camera perception with only a POSIX-compliant operating system.

3.4 libkar [5]

libkar is an extremely simple Qt-based archive format used to store and transport data in
KISS IDE and its targets (including, but not limited to, the Link.) libkar is implemented
as a flat key/value dictionary with methods to treat the keys as a two-dimensional tree
structure when useful. This dictionary is then serialized to a byte stream for transfer over
other mediums.

Serialization is a fancy term for taking a data structure like a color, time, or image and
converting it into an array of bytes that can be either stored on a disk or transferred to
another computer via a serial connection. Serialization is reversed using deserialization.

6



3.5 pcompiler [6]

pcompiler (short for precedence compiler) is a library that automatically attempts to pro-
duce executables from a set of input files. pcompiler uses file suffix precedence to create a
weak build ordering, and then applies transforms to mutate the input into an output. For
example, given the files: main.c, functions.h, and functions.c, pcompiler will generate
the following transforms (herein denoted by a →):

1. {functions.h} → ∅ (passthrough transform)

2. {functions.c, main.c} → {functions.c.o, main.c.o} (c transform)

3. {functions.c.o, main.c.o} → {a.out} (o transform)

The C language goes through three build phases: preprocess, compile, and link. The
preprocess step takes macros like #include "file.h" and replaces them with the specified
file before passing the .c files to the compiler. The compiler generates .o (object files) from
the .c files. Object files are linked together to create an executable (the default executable
name on linux is a.out)

The passthrough transform is used to retain files in the build directory but remove them
from the compilation set. Since .h files are handled by the .c compiler, there is no need for
pcompiler to consider them further. pcompiler expects to only produce one output file (or
terminal), which means keeping the .h around would result in a failed compilation.

While most advanced programmers would prefer to use a Makefile or other build system
for their code, the syntax of these files are often esoteric and distract from mastering the
basics of programming. Since the Link’s target audience is middle and high school students,
the decision was made to avoid manual build systems altogether. Enabling support for
custom Makefiles would be an interesting project to attempt for the Link.

3.6 botui [7]

botui is the graphical user interface the user is presented upon starting a Link. botui focuses
on four primary tasks: Sensor visualization, simple motor/servo control, device configuration,
and, perhaps most importantly, managing user programs. botui is itself a libkovan instance
that communicates with the system using standard libkovan functions. This means that any
behavior exhibited by botui can be replicated in a user program or alternate user interface
painlessly.

3.7 kovan-kmod [8]

kovan-kmod is a kernel module that mediates communication between libkovan instances
and the FPGA. The chosen IPC mechanism was UDP, as UDP allows full duplex commu-
nication and avoids the synchronization headaches of other IPC mechanisms. This imple-
mentation could also be used to theoretically send commands to kovan-kmod from a remote
libkovan instance. The motor PID controllers currently reside inside of kovan-kmod and
is continuously called using a kernel timer. The PID controllers were originally intended to

7



reside on the FPGA, but the Link’s FPGA is too small to hold the relatively complex sequen-
tial logic required for four PID controllers. This means that motor PID control is intensive
on the CPU and very “rough” compared to FPGA or co-processor based PID controllers.
This issue will hopefully be addressed in a future version of the controller.

3.8 kovan-recovery [9]

Recovery mode is a special boot mode that is used to perform firmware upgrades and recover
semi-bricked devices. To understand kovan-recovery, it is first necessary to understand
the boot process of the Link and the initialization process of linux. The Link uses a custom
Master Boot Record (MBR) initially designed by Chumby Industries for the Chumby. 1 This
custom MBR contains two linux kernels: One regular kernel and one special recovery kernel.
It is important to reiterate that these kernels are not stored on the device’s filesystem, but
instead directly in the MBR. The process of booting a linux kernel goes something like this:

1. Load the kernel into RAM.

2. The kernel then builds what is called an initramfs and executes a process called
init. initramfs contains an extremely minimal filesystem that is used by the init

process. The idea behind an initramfs is that certain operations that don’t belong
in the kernel can be executed before the main filesystem is loaded. For example,
imagine the case in which a filesystem is encrypted. Linux doesn’t know how to use an
encrypted filesystem, so a developer could design an initramfs that loads the correct
keys, decrypts the filesystem, and then continues the boot process. It should be noted
that the initramfs is actually compiled directly into the kernel itself.

3. The real root filesystem is loaded and initialization of the system continues.

kovan-recovery takes advantage of initramfs to “hijack” the boot process before a root
filesystem is mounted. This detail is important, as kovan-recovery works by overwriting
the entire internal SD card. Since the SD card is being overwritten, it can not be used as a
root filesystem. Since kovan-recovery and linux exist only in RAM, this is not an issue.

As mentioned earlier, the initramfs is compiled directly into the kernel. This means
that the Link needs two kernels: One special recovery kernel and one regular kernel. Before
the linux kernel is loaded, the side button is checked to see if it is pressed down. If it is, the
special kernel is loaded instead of the regular one.

kovan-recovery itself is an extremely simple C program that uses zlib and basic file
i/o to inflate and subsequently write to the internal drive. Since including libraries in the
initramfs is burdensome, kovan-recovery performs double-buffered drawing directly to
the /dev/fb LCD frame-buffer, using an extremely simple bitmapped font to perform font
rendering.

Unix represents almost every installed device as a special type of file in the /dev directory.
This means that a developer can open a device and write to it like it was a file. As noted
above, kovan-recovery opens the LCD as a file and writes pixels at certain offsets that
correspond to onscreen (x, y) locations. This concept is applied in several places throughout
the system, and is important to understand.

1http://en.wikipedia.org/wiki/Chumby

8

http://en.wikipedia.org/wiki/Chumby


3.9 KISS IDE [10]

An elementary understanding of KISS IDE 4’s architecture is important for modifying and
extending the Link.

KISS IDE

GUI

Independent Source File

Project A

Communication SystemC Lexer Plugin

Kovan Plugin

Jack's Link Jill's Link

MainWindow

Tab Tab TabTab

SourceFile SourceFile SourceFileDocumentationTab

CLexer

Unit

CommunicationManager

CLexer CLexer

Unit

Project

Unit Unit

CommunicationWorker

CommunicationEntry

CommunicationWorker

CommunicationEntry

Target Target

InterfaceManager

Interface

kovan-serial kovan-serial

ConstructorC

Figure 3: A Hypothetical Runtime Snapshot of KISS IDE

Two of the core concepts in KISS IDE are that of the Interface and Target. Interfaces
encapsulate the the discovery, enumeration, and creation of Targets for a specific device.
A Target is used to download, compile, run, and perform other operations on a connected
device. Another core concept in KISS IDE is that of the Unit. A Unit is an abstract
class that uses the visitor pattern to create in-memory project and source file archives.
For example, imagine the existence of a project called “Task1” that contains three source
files: foo.c, bar.h, and baz.c. Now imagine that the user invokes a download command
on the source file foo.c. foo.c will ask that its Unit invoke a download command on
the top-level Unit, which is Task1. Task1’s unit will then create an empty archive, add
project files to it, and visit its children Units recursively. A child Unit may then add its
required files to the archive. Once this recursive process finishes, the completed archive is
sent wrapped in a CommunicationEntry and queued in the CommunicationManager. The
CommunicationManager then handles non-blocking execution of the task on the given target.

The most important thing to note here is that KISS IDE does not compile source files
locally when communicating with a Link. A compile command results in the following chain
of actions:

1. Download the source archive to the Link

2. Request a remote compilation on the Link.

3. The Link extracts the archive to a temporary directory

4. The Link invokes pcompiler on the directory and blocks until the compilation is com-
pleted.

9



5. KISS IDE then receives these results from the Link.

6. Results are formatted, highlighted, and then presented to the user.

While compile time is negatively influenced by this methodology, there are several notable
advantages:

� A firmware exposing new APIs on the Link doesn’t require a new version of KISS IDE.
This was a large problem with the CBCv2 robotics controller.

� KISS IDE can work without a local compiler.

� The archive format is language neutral, which means languages can be added or re-
moved without changing KISS IDE (although syntax highlighting might not work).

3.10 ks2 [11]

ks2 is KIPR’s 2D simulator for the Link. Internally, ks2 implements the same protocol
and UDP server used by kovan-kmod, meaning local instances of libkovan will be able to
seamlessly communicate with the simulator rather than an actual Link. ks2 also implements
sections of the kovan-serial network server to communicate with KISS IDE in exactly the
same way a Link would.

4 Conclusion

While this document covers several pieces of the Link’s firmware and attempts to give context
to certain features, it is by no means comprehensive. If you have any questions or concerns,
please feel free to contact the authors for more information. Once again, for detailed infor-
mation please visit this paper’s website: http://bmcdorman.github.io/link. This paper’s
website is also an open source and public domain git repository, so feel free to fork it and
add insight!

4.1 Acknowledgements

� Thank you to Clemens Koza for his efforts in creating reliable instructions for setting
up a build server from scratch.

� Thank you to the users that have coped with the early instabilities of the new system.

10

http://bmcdorman.github.io/link


References

[1] J. Southerland. kovan-fpga. https://github.com/kipr/kovan-fpga, 2013.

[2] B. McDorman. libkovanserial. http://github.com/kipr/libkovanserial, 2013.

[3] B. McDorman. kovan-serial. http://github.com/kipr/kovan-serial, 2013.

[4] B. McDorman and J. Southerland. libkovan. http://github.com/kipr/libkovan,
2013.

[5] B. McDorman. libkar. http://github.com/kipr/libkar, 2013.

[6] B. McDorman and N. Zaman. pcompiler. http://github.com/kipr/pcompiler, 2013.

[7] B. McDorman, J. Southerland, and N. Zaman. botui. http://github.com/kipr/botui,
2013.

[8] J. Southerland and B. McDorman. kovan-kmod. http://github.com/kipr/

kovan-kmod, 2013.

[9] B. McDorman. kovan-recovery. http://github.com/kipr/kovan-recovery, 2013.

[10] B. McDorman, N. Zaman, and J. Villatoro. Kiss ide. http://github.com/kipr/kiss,
2013.

[11] B. McDorman and J. Southerland. ks2. http://github.com/kipr/ks2, 2013.

This document was compiled on June 19, 2013.

11

https://github.com/kipr/kovan-fpga
http://github.com/kipr/libkovanserial
http://github.com/kipr/kovan-serial
http://github.com/kipr/libkovan
http://github.com/kipr/libkar
http://github.com/kipr/pcompiler
http://github.com/kipr/botui
http://github.com/kipr/kovan-kmod
http://github.com/kipr/kovan-kmod
http://github.com/kipr/kovan-recovery
http://github.com/kipr/kiss
http://github.com/kipr/ks2

	Introduction
	Disclaimer

	Hardware Overview
	The Spartan 6 FPGA

	The Software Stack
	libkovanserial libkovanserial
	Authentication Handshake
	Handshake Example

	The kovan-serial Daemon kovan-serial
	Notes on Using the USB Micro Port

	libkovan libkovan
	libkar libkar
	pcompiler pcompiler
	botui botui
	kovan-kmod kovan-kmod
	kovan-recovery kovan-recovery
	KISS IDE kiss
	ks2 ks2

	Conclusion
	Acknowledgements


