
General Code Optimization Techniques 
Wesley Myers 
wesley.y.myers@gmail.com 
 

General Code Optimization Techniques 
 
Introduction 
 
 Normally, programmers do not always think of hand optimizing code.  Most 
programmers leave it to the GCC compiler to optimize their code, but sometimes the 
programmer must in fact think of their own optimizations.  Embedded systems face this 
problem every day.  Size can be an issue when there is very little memory.  Sometimes 
time becomes an issue when the embedded system is real time and must meet a deadline.  
Programmers must become creative and crafty to optimize their code.  This paper 
discusses various techniques to optimize code in space and time. 
 
Common Sub Expression Elimination  
 

Common sub expression elimination is an easy way to simplify code and save 
space. The best way to detect this is by seeing where the same code elements arise 
multiple times.  The main benefit of this optimization is that there is less code to be 
accommodated in terms of memory.  Besides eliminating code that may do the same 
thing, large chunks of code can be turned into functions, thereby making the code easier 
to read.  In addition, this method will make bug fixes easier. In Figure 1, code size is 
optimized by eliminating the repeating code, however time is lost in that a jump must 
occur to go to the code and a jump must occur to return to original calling function.  To 
the left is the main body of code where the same body of code appears multiple times, 
labeled “Function X.”  If we pull out that function, as shown to the right, the total 
memory required is reduced, however note that the execution takes longer because we 
still go over the same code, but now we have added jumps, as shown by the arrows. 

 

 
 

Figure 1 – Common Sub Expression Optimization Example 
 



Dead-Code Elimination  
 

Compilers have a hard time trying to eliminate dead code.  By giving the compiler 
free reign of this, the compiler could “optimize” out sections of code unintentionally.  
Thus it is mainly up to the human to detect these problems.  This optimization targets 
memory in that less code is needed to be stored in memory. 
 

Many times these kinds of functions occur for testing.  Figure 2 illustrates a 
simple example of some standard code that a tester may write.  Here, debug is essentially 
a flag that tells debug statements to print.   
  

debug = 0; 
 

if(debug)  
{ 

    printf(“testing…”); 
} 
 

Figure 2 – Testing Code 
 
The problem with this is that it generates a lot of dead code while debug is equal to zero.  
The way to eliminate this is by using the preprocessor declaration #ifdef to eliminate 
unused code, as shown in Figure 3.  So instead you have the following 
 

#ifdef debug 
 

printf(“testing…”); 
 

#endif 
 
Figure 3 – Testing Code with Optimization 

 
If debug is not defined, then that line of code won’t even be included after compilation.  
The preprocessor will go through and check for these declarations.  #IFDEF basically 
looks at what is immediately after it, in this case debug.  It then goes to check if debug is 
defined (if #define debug is somewhere up above).  If it is, then the printf statement will 
be included in the final binary.  If not, then that line of code will not be included.  
#ENDIF is basically the closing bracket of the #IFDEF.  Anything between the two may 
or may not exist depending on the definition. 
 
Loop Unrolling 
 

Loop unrolling can be done when the code does multiple iterations of work in 
each cycle of a loop.  This technique is used to save a jump back to the start of the loop.  
Making the jump can cost time if the array size is considerably large.  Consider a loop 
that must iterate 10 times and executes one line of code, as shown in Figure 4.  This often 
happens when using or manipulating an array.  Consider that the execution takes one unit 



of time and that a jump takes only one unit of time.  The result after compilation is that 
the total time taken is 20 units of time.  If instead two lines of code were executed such 
that the loop executed 5 times instead, as shown in Figure 5, the total time taken is 15 
units of time and we have shaved off 25% of the original time!   
 

int myArray[10]; 
 

//somewhere array gets data… 
 

int sum = 0, i; 
 

for(i = 0; i < 10; i++) 
{ 

    sum += myArray[i]; 
} 
 

Figure 4 – Typical Array Iteration Code 
 

int myArray[10]; 
 

//somewhere array gets data… 
 

int sum = 0, i; 
 

for(i = 0; i < 5; i+=2) 
{ 
 sum += myArray[i]; 
 sum += myArray[i+1]; 
} 
 

Figure 5 – Array Iteration Code with Loop Unrolling 
 
 
__inlining of Functions 
 

__inlining of functions is best used when there is a very small and simple function 
that takes inputs.  When a function with argument is called in the ARM processor, the 
registers to be used in the new function inputs must be moved into input registers for the 
called function.  This will be explained further in this section.  __inline removes the need 
for these operations and makes the function and inserts it into the main body of code.  
Doing this can help save you clock cycles, but it can also possibly increase your code 
size.  This optimization is the opposite of common sub expression elimination. 

 
 



 
 

Figure 6 – Code without inline Optimization [2] 
 

In Figure 6, what we see is assembly code, essentially what is generated by the 
compiler.  What we see is a function called “t” (0x10) that has two input variables, x and 
y.  It calls another function called “max” (0x0) with two input variables, a and b.  
Variable x is stored in r0 and variable y is stored in r1.  R0 typically holds the first 
variable, r1 typically holds the second variable, and so on and so on.  In order to call 
“max,” r0 must have x and r1 must have y, so they are loaded into the registers.  BL 
means that the code branches to the “max” function, so we move to 0x0 and start 
executing.  “Max” does its thing and we return back to the main body of code.  
Essentially this saving process happens again as we call “max” again.  One can see that 
this is a bit tedious and uses up cycles.  By inlining the function, we can eliminate all 
these register saves. 
 



 
 

Figure 7 – Optimization with __inline [2] 
 
 In Figure 7, __inline is implemented for the max function.  Essentially the code 
for max is now in the main body of “t” (0x0).  What this means is that we have saved the 
overhead of saving the variables into registers.   
 
Summary 
 
 With a few tricks, it can be really simple to optimize code and gain extra clock 
cycles.  With great power comes great responsibility.  Sometimes optimizing too much 
can result in corner cases that can lead to your system doing strange things.  Be cognizant 
that optimization almost always involves a space versus time tradeoff.  Optimizing for 
time can increase the code size, and thus one must be aware of how an optimization may 
affect the program such as optimizing for time may result in the program being too large 
to fit in memory. 
 
Bibliography 
 
[1] Narasimhan, Priya. “Code Optimization.” 18-349 Embedded Real-Time Systems.  
Carnegie Mellon University, Aug 2011. Web. Jun 2012. 
<https://www.ece.cmu.edu/~ee349/docs/06_CodeOptimization_handout.pdf>. 
 


