
Disbotics

Himanshu Mongia, Manuel Esberger

Vienna Institute of Technology, manuel.baskhiron@student.tgm.ac.at, hmongia@student.tgm.ac.at

 DISBOTICS

DISBOTICS – THE IDEA
Given the limited amount of raw material combined with today's throwaway society, the reuse

of goods is of crucial importance. Hence, the disassembly of products should become an

essential part of their life-cycle. [1] Therefore, the idea of Disbotics - which is a fancy name

for disassembly robotics - is to develop a concept for disassembly of components with mobile

autonomous robots. Autonomous robots are robots that can perform desired tasks in

unstructured environments without continuous human guidance. [5]

Also, children should be encouraged to research in the field of autonomous robotics in a fun

way. By participating in projects and programs like “Botball” [9], young scientists are able to

recognize and learn easily about the problems of robotics in disassembly processes.

KNOWLEDGE
A production usually possesses sufficient knowledge about the manufacturing process and the

involved machines as well as product parts. However, regarding disassembly processes this

Know-how is non-existent. Therefore, to be able to disassemble existing products efficiently,

the corresponding components' structure has to be perceived and determined e.g. by using a

knowledge base. Optical tracking in combination with knowledge bases and the ability of

mobile robots to learn and act autonomously promises to be a solution of the problem of

autonomous distributed disassembly. [1]

DISBOTICS - OUR PROJECT
Disbotics is accomplished in cooperation with the Vienna Institute of Technology, the ACIN

Institute of the Vienna University of Technology and the KISS Institute for Practical

Robotics. [2]

The project was partly done in the course of our project management classes at the Vienna

Institute of Technology. Therefore, the following documents were required before the project

could be executed:

 Product requirements document:

defines the requirements for our challenge to disassemble LEGO-Blocks.

 Feasibility study:

checks the technical feasibility of the project

 Functional specification document:

documents the technical concept

GOALS

We simplified the issues of autonomic disassembly and decided to take apart simple structures

like LEGO-Duplo-Blocks and sort individual parts afterwards on the basis of a specific

criterion - in our case color. The purpose of this approach was to win significant core

knowledge regarding disassembly processes with mobile robots, while leaving out specific

issues and disturbances.

New technologies like Multi-Agent and rule-based systems lead to a decentralized concept

with artificial intelligence and promise robustness against disturbances. The usage of

semantics copes with the challenges of communication between heterogeneous systems. [1]

DISBOTICS CORE – THE FRAMEWORK

This framework is the fundamental of our research project which is further described in the

following chapter. The first version was developed at the Vienna Institute of Technology in

the informatics department during the fifth grade in 2010/2011. Since version 1.1, this

framework was developed further at the Vienna University of Technology by Clemens Koza

and Christoph Krofitsch. [2]

FUNDAMENTALS

The framework “Disbotics Core” was the first step in this major project. A robot controller

provided by KIPR, running a Java VM adapted for limited devices is necessary. This

framework provides an agent- and rule based programming environment (see description

below) with the usage of an ontology, optimized for this limited environment. The ontology

supports high-level tasks by allowing the user to create new classes which can be included in

several rules to control the robot‟s behavior. Moreover it also maps robot-specific parts, such

as controller, sensors, etc., which can be accessed with rules. Among other things, the user has

the possibility to extend the ontology, set rules for it and implement new logic in form of

agents. In the current version, the implemented agent-based system is JADE (Java Agent

DEvelopment Framework) [10], the used rule based system is OPSJ and the OWL-standard is

used for the ontology. The framework is designed with flexibility in mind, so that the multi-

agent system, rule engine and hardware (controller) may be exchanged with moderate effort,

based on a plugin system. [2]

FUNCTIONALITY

Agent-Based Programming
A software-agent is an

autonomous unit which uses

specific domain knowledge and

standardized interaction to solve

various tasks.

The question mark represents the

knowledge, which interprets

perceptions and triggers actions.

In our case, the ontology is the

knowledge and the rule engine

controls the robot’s behavior.

Even though figure no. 2 shows the usage of multiple robot controllers, the whole environment is

based on one single ontology, which is copied to each of the controllers. So each controller has

components of other controllers (e.g. sensors) in its ontology, but only updates its own components.

The updating process is performed

between the ontology and the

specific system-libraries of the

controller; in case of the CBC

Controller, the CBCJVM is used

for that. In this process, the own

components mapped in the

ontology are synchronized with the

values from the system-libraries in

order for rules to fire. Each

controller has its own rules file,

which contains the main behavior

of the robot defined in a rule based

programming language, such as

OPSJ. [2]

The immense benefit of having a

global ontology with components of

all controllers is the possibility to write rules for components of other controllers. However, these

components don‟t get updated automatically, so it‟s necessary to communicate with agents of other

controllers and request their ontology values. This can be done with specific commands, which are

simply invoked in the rules file.

FIGURE 2: BASIC OVERVIEW OF THE FRAMEWORK DISBOTICS

CORE [11]

FIGURE 1: THE INTRODUCTION OF AN AGENT

OPSJ is very similar to Java. All used classes have to be imported, and every rule is a class on its own

which can inherit from other classes like the DisboticsRuleSet. The rule definition starts with the

keyword rule which is followed by the name of the rule. Every rule is built like a simple if-then

condition whereby the single clauses in the if-condition are automatically connected with a lo1gical

AND. So the following example checks if any Digital-sensor has the value true AND if that Digital

sensor is named controller1_blackbutton. Only if both statements are true, the rule will fire.

IMPLEMENTATION

CONSTRUCTION
We were committed to construct the robots as compact and stable as possible. Both robots, Grabber

and Lifter, are briefly explained in this section, which highlights specific details we thought were

worth mentioning.

GRABBER

This is what the Grabber

roughly looks like. The

green/red colored blocks were

mounted for orientation

purposes, so the Grabber can

clearly be identified by the

Lifter.

Also the Grabber is responsible

for sorting individual parts

which includes lifting the robot

with a lever. By doing that the

Grabber can simply place

individual parts into suitable

containers.

FIGURE 3: CONSTRUCTION GRABBER

import disbotics.core.rules.opsj.DisboticsRuleSet;
import disbotics.core.hardware.cbc.model.Digital;

import model.Flags;

public class rules extends DisboticsRuleSet {

rule print

if {

 d: Digital (d.isValue() == true,

 test equals(d.getNAME(),"controller1_blackbutton"));

} do {

 command("ont-update", "Grabber", "flag.grab");

}

}

The robot has got two ET

sensors and five infrared

sensors, which are both

different distance sensors.

1, 2 … motors to drive

3 … servo to lift the robot

4 … lever (is lifted by the

 servo)

5 … skeleton of the robot

LIFTER

Basically the Lifter has the same skeleton and interfaces as the Grabber. However, it additionally

possesses the function to lift his

arms synchronously. These arms

can be tilted to the left and the

right, by twisting the wheel on

which the arms are attached. The

foregoing tasks are vital in the

process of taking the LEGO-

Block apart.

Both arms can slide along the rail

independent from each other.

The grip of the arms is crucial

while holding the LEGO-stone

because of the actual disassembly

process. Therefore the arms are

covered in rubber.

PROGRAMMING
Since the very beginning the programs were divided into high-level and low-level, whereby high level

is implemented in the ontology and the rule engine - in our case, OPSJ. Low-level includes methods

which can simply be invoked in order to perform predefined sets of action, like driving or picking up

things.

FIGURE 5: CONSTRUCTION LIFTER

FIGURE 4: CONSTRUCTION GRABBER

HIGH LEVEL

Both robots, Grabber and Lifter, communicate with each other by toggling various variable values

after certain actions have been performed.

The communication is implemented in a rules file, which contains a rule for every action, invoking

low-level methods and handling other overhead tasks.

Most people would expect that a large part of the tasks and problems are solved by using rules, as this

would make the robots much more flexible and intelligent. Even though this is true, reading single

sensor values in the ontology and reacting to them by triggering rules turned out to be very slow and

impractical. Therefore, we only implemented rules for the communication of both robots, and major

steps, when inevitable.

LOW LEVEL

Parallel alignment
There were several orientation tasks

to be solved, like positioning the

Grabber parallel to the margin of

the field. For this purpose, we used

2 ET sensors, which measure the

distance to the next hurdle or

margin. The sensors were built into

each end of a long LEGO-stone. By

using a high-pass-filter and

comparing both values, the robot

could be aligned parallel to the

margin of the field.

Artificial color

Basically, the camera only recognizes four colors,

which are way too few. However, colors can be

“mixed” to artificially “produce” more colors,

which can be recognized by the camera. By

encircling one color by another we created a

specific criterion which can be checked in low-

level programs. We handled various orientation

tasks by using artificial colors like the ones in the

figure no. 7.

FIGURE 6: PARALLEL ALIGNMENT

FIGURE 7: ARTIFICIAL COLOR BLOCKS

“Feeling” arms
As the camera was not reliable enough to determine whether the arms were holding a Lego-stone or

not, we used Top-head sensors, which were built into the arms.

LESSONS LEARNED

MINIMIZE POSITIONING
The execution of the disassembly process was planned to be done by 3 robots, whereby each robot

would have been responsible for one task like grabbing, taking apart (lifting) and sorting. Also, the

process was divided into two fragments:

 Disassembly process

 Mobile path planning / Orientation

Despite our expectations, the disassembly processes were not as complicated to solve as

orientation tasks, when working with mobile robots.

The positioning of robots to each other had to be done very exactly in order for the disassembly

process to work at all. Therefore it was a logical conclusion to summarize tasks like grabbing and

sorting, which could also be done by the same robot and eliminate the third robot. By doing that, we

were able to minimize positioning and movement, simplifying the process once again and therefore

eliminating potential errors.

CONCLUSION
The issues of autonomic disassembly processes with mobile robots were simplified by

working with simple structures like LEGO-Duplo-Blocks. Technologies like multi-agent and

rule-based systems were applied because they were considered suitable.

A better camera would allow the robots to be more reactive and therefore more efficient.

Therefore this sector could be improved by introducing a better camera.

GLOSSARY
Ontology In computer science and information science, an ontology formally represents

knowledge as a set of concepts, and the relationships between those concepts.

[6]

Framework A software framework is a universal, reusable software platform used to develop

applications, products and solutions. Software Frameworks include support programs,

compilers, code libraries, an application programming interface (API) and tool sets that

bring together all the different components to enable development of a project or

solution. [7]

Rule-based

system

In computer science, rule-based systems are used as a way to store and manipulate

knowledge to interpret information in a useful way. They are often used in artificial

intelligence applications and research. [8]

REFERENCES
[1] DI (FH) Mag. Gottfried Koppensteiner;

Brief description of DISBOTICS – Disassembly Robotics;

available at http://www.sparklingscience.at/en/projekte/495-disbotics-disassembly-robotics;

last accessed on 12.04.2012

[2] Clemens Koza, Christoph Krofitsch, Manuel Parg, Prvulovic Antonio;

Disbotics Core Framework user guide;

last accessed on 12.04.2012

[5] Wikipedia article about Autonomous robots;

available at http://en.wikipedia.org/wiki/Autonomous_robot;

last accessed on 16.04.2012

[6] Gruber T.;

The term Ontology was explained on the Stanford educational website;

1992;

available at http://www-ksl.stanford.edu/kst/what-is-an-ontology.html;

last accessed on 16.04.2012

[7] DocForge (An Open Wiki For Software Developers) explains the term „Framework‟;

available at http://docforge.com/wiki/Framework;

last accessed on 16.04.2012

[8] Jocelyn Ireson-Paine;

Rule-based systems are explained on the following website for students;

1996;

available at http://www.j-paine.org/students/lectures/lect3/node5.html;

last accessed on 22.04.2012

[9] KISS Institute of Practical Robotics, The Botball Season;

available at http://www.botball.org;

last accessed on 24.05.2012

[10] Telecom Italia Labs, JADE - Java Agent Development Framework;

available at http://jade.tilab.com/;

last accessed on 24.05.2012

[11] Gottfried Koppensteiner, Clemens Koza, Christoph Krofitsch, Manuel Parg, Antonio Prvulovic

and Munir Merdan;

Knowledge Based Agent Architecture for High Level Control of Mobile Robots;

presented at the Global Conference on Educational Robotics on July 2011

