
Common Coding Errors

Shomiron Ghose

Thomas Jefferson High School

For Sci. and Tech.

Common Coding Errors
How to Avoid Some of the More Common Errors

1 Introduction

During my adventures into coding I have had the opportunity to experience many error

messages. Though this may seem bad, it is actually the opposite as it provides the

opportunity to learn how to remedy the mistake and hopefully not commit the same error

again. Better yet, it gives you the ability to spot the error over time so that you can

identify it in the code of others and help out your teammates!

2 Errors

2.1 The Oh-So-Fun Braces Addition or Omission

This so very common error arises when you have one parenthesis too many or one

parentheses missing.

#include<stdio.h>

int main()

{

printf("Hello World\n");

printf("%d",add(1,2));

}

int add(int a, int b)

{

 return a+b;

}

#include<stdio.h>

int main()

{
printf("Hello World\n");

printf("%d",add(1,2));

}
int add(int a, int b)

{
return a+b;

#include<stdio.h>

int main()

{
printf("Hello World\n");

printf("%d",add(1,2));

}
int add(int a, int b)

{
return a+b;

}

}

Figure 2: Missing Parenthesis

Figure 1: Working Code

Figure 3: One Parenthesis Too Many

In Figure 1: Working Code we have a simple add method that adds two values that are

passed, not pointers although the same error, at least using GCC 4.4.1. Figure Two is

missing a parenthesis and Figure Three could use one less.

Figure 4: Working Code Running

Figure 5: One Parenthesis Missing Error

Figure 6: One Parenthesis Too Many Error

In Figure 4 it can be seen that assuming all parenthesis are in there right place, the program runs

as it should. If you have one missing though, it expects an end of statement which it never gets

(Figure 5) and if you have too many (Figure 6) it expects there to be some identifier which is

missing. To alleviate this saving code and compiling helps as you can identify sooner where you

may have made a mistake. For large projects, sub versioning can make a world of difference as

well.

Another thing that may be of help is coding conventions, choosing either a standard style of

where to put parenthesis or using a constant style that you prefer can help you locate where one

may have been lost if the line number given is not indicative of the general region. Even better in

cases, some IDEs such as CodeBlocks and I assume Visual Studio or even text editors such as

Notepad++ will make it such that when you click on a parenthesis, it will show it’s ‘match’

making it easier to find where one may have been lost or inadvertently added.

As a side note, it is useful to apply the same principles to nested parenthesis as trying to find the

one parenthesis that is missing among many others is quite an ordeal.

Above are different variants of ways to style parenthesis; I believe a style similar to Figure 9 to

be the most commonly used. Figure 10 is reminiscent of code squished together, something not

typically wanted though sometimes compact parenthesis help such as if you have multiple nested

layers it can help with spacing in order to differentiate those. Different ways to style parentheses

are detailed in various conventions and style guides and are typically meant to help with clarity

for readers as well as functionality for code writers.

2.2 The Semicolon

Semicolon omissions in C may be commonplace for those used to languages that do not use them,

an example of which is Python and the more satiric whitespace language composed of a variety

of spaces, tabs, newlines and the like., though personally sometimes making a multiple nested

hierarchy of loops one space off is frustrating if the spaces are not visible.

 Error! Reference source not found.

Omitting the semicolon in Figure 11 earns a ‘error: expected ';' before '}’ while in Figure 12 it

says it expected a semicolon before the second printf statement. In both of these it conveniently

lists line numbers, making it an easy to solve problem.

#include<stdio.h>

int main(){printf("Hello World\n");}

Figure 10

#include<stdio.h>

int main()

{

printf("Hello World\n");}

Figure 7

#include<stdio.h>

int main()

{
printf("Hello World\n");

}

Figure 8

#include<stdio.h>

int main(){

printf("Hello World\n");

}

Figure 8

#include<stdio.h>

int main()

{
printf("Hello World\n")

printf("Bye Bye");

}

Figure 10

#include<stdio.h>

int main()

{
printf("Hello World\n")

}

Figure 9

It may be interesting to note that Figure 13 and Figure 14 are both valid programs though you

cannot really do anything with the later since you do nothing with the value and are calculating

the expression and immediately throwing it away. Figure 13 on the other hand is an example of

C accepting empty statements. This same concept is used when doing an empty statement in a

for loop as in Figure 15 in which the ‘initializer’ statement is left blank as the current value of

integer ‘a’ is used.

2.3 Forgetting to Assign A Value

In these cases (Figures 16 and 17) the variable was ‘made’ but never given a value which means

it keeps the value of the point in memory it was given leading to unexpected results and numbers

that make no sense with regard to their intended purpose. The pointer is pointing to an old value

which makes for the seemingly-random result. The simple fix here is to remember to assign

values to the variables before using them.

#include<stdio.h>

int main()

{
1+1;

}

Figure 14

#include<stdio.h>

int main()

{
printf("Hello World\n");;;;;;;;

}

Figure 13

#include<stdio.h>

int main()

{

 int a = 1;

for(;a<5;a++)

{

 printf("%d\n",a);

}

}

#include<stdio.h>

int main()

{

int a,b;

printf("%d",a+b);

}

Figure 16

Figure 11

#include<stdio.h>

int main()

{

int a;

printf("%d",a);

}

Figure 17

3 Summary

In this paper I have discussed some of the more common errors that you may find while learning

C or accidentally editing parts of your code. As a result hopefully your code will have fewer

bugs and you will be able to spend more time implementing new functionality rather than

dealing with small bugs. Of all the things to take away, I think parentheses is the most important

as it is tiresome to search for one parenthesis among tens of them especially when they are

closely nested as in Figure 18.

David B. Stewart. Twenty-FiveMost Common Mistakes with Real-Time Software Development.

In Proc. Embedded Systems Conference San Fransisco (ESC SF) 2001, April 2001

#include<stdio.h>

int main()

{

printf("%d",sum(1,sum(2,sum(3,sum(4

,sum(5,sum(6,sum(7,sum(8,sum(9,10))

))))))));

}

int sum(int a, int b)

{

 return a+b;

}

Figure 12

