
Modularization of Botball Libraries
Kevin Cotrone, Garrett Sickles, and Marshall Parker
Norman Advanced Robotics
kevincotrone@gmail.com, garrettsickles@gmail.com, runningjmp@gmail.com

Modularization of Botball Libraries

Introduction
The point behind modular coding in Botball is to allow programmers to reflect the mechanical
design of their robot, but more importantly enable code to be easily handed down and assembled
year after year no matter who the programmer may be. By producing code in modules, teams
are able to easily organize and produce standardized libraries. Maybe you create a programming
module to gather and interpret E.T. data and then pass the results to your main program logic
which then operates a servo module. Basically, it is a lot easier to build a house from bricks
(Modules) and mortar (logic) you have already created than to spend countless hours working
out how to build a brick and how to make mortar every year.

What is Modular Code
Modular Code separates different functionalities from each other in a logical, convenient
manner. One way we use modular code is to affect multiples of the same or similar function.
What this means is instead of making very specific, single use code, take the time to build
functions with robust, multi purpose functionality that can be used in varying circumstances. In
the long run this cuts development and debugging time by increasing the effectiveness of your
code.This allows programmers to easily find what needs to be changed because it is not the
functions’ actual construction, but instead the parameters you are passing to it. In the future it
will be much easier to interpret your code if it is engineered modularly because it allows you to
see how the changes made to each module affect the outcome of your overall program. [1]

Why Modular Code is Best
The modular open source code libraries Norman Advanced has created offer code for everything
from reading and time averaging sensor values to moving servos with variable speed and
pinpoint precision. The libraries offer also a pseudo middle ground between object oriented
code, like Java or C++, and procedural code, like C. We achieve this by structuring the different
components of the robot into memory organizations like structures and unions. Our modular
code allows you to include only what you need while using code that every robot needs. While
you might not use every function of every library, having the code to use a servo in every way,
read a sensor in different ways, or to move distances with a CBC can clean up the main program
that runs a robot and keeps code consistent year to year. This means that each robot can have the
same code for servos and sensors, enabling you to contribute and work together with identical
code and therefore reducing programming and testing time.
In the same way that Java offers modularization in the form of packages, Botball Open Code
offers modularization through our header files. You can use both C and Java with the CBC but
the Botball Open Code was created in and intended for use in C. Using the Botball Open Code
libraries enables code to be fluent in structure and easier to manipulate. With libraries for create
movement, create scripting, CBC navigation, servo movement, and both analog and digital
sensors, you’re able to control all pieces of the Botball kit more efficiently than with the standard

mailto:garrettsickles@gmail.com
mailto:garrettsickles@gmail.com
mailto:garrettsickles@gmail.com
mailto:garrettsickles@gmail.com
mailto:garrettsickles@gmail.com
mailto:runningjmp@gmail.com
mailto:runningjmp@gmail.com
mailto:runningjmp@gmail.com
mailto:runningjmp@gmail.com
mailto:runningjmp@gmail.com

libraries.

Something else we have incorporated into the design is pseudo-object oriented functionality to
limit the abstraction of servos, motors, and sensors to a small, well-defined parameter set which
is both intuitive and easily to manipulate. The functions we created to control different aspects of
the robot still provide robust access to all the robot’s features.

Influences of Mechanical Design on Modular Code
The entire reason we believe modular code is especially effective in Botball is because it mirrors
the same structure and design of the physical robot. Builders on most Botball teams reuse
specific designs for motors, servos, claws, arms, etc... and they may even recycle certain designs
year after year. Modular code is the same as these mechanical designs except the libraries
we have developed are open source and formulaic, allowing any botball team to utilize their
functionality.

Modular code can also also be useful though because it enables programmers to build and share
code in a very easy manner.

How to Apply Modular Code to Your Robot
Modular code can be exciting to apply to your robot because it can be challenging and push you
to learn and think more critically about how you design and build robots and code. For instance,
if you were to build a claw and want to write code to raise and lower this claw, instead of making
completely specific functions to do this, you could use preassembled servo functions that can
already operate your claw to modularize code and have more coherence. The other way to apply
modular code to your robot is by organizing the different code modules into multiple header
files. By doing so, you are able to improve the coherence of your library in an extremely orderly,
logical, and modular way.

Examples
Using the Open Code is a little confusing at first but it’s easy to grasp the concept.

The movement of a CBC robot with the cbcnavlib.h library is fairly simple after measuring the
robot’s wheel diameter and wheel base.

Cbcnavlib.h also allows you to move in the same manner as the create using the cbc_arc,
cbc_straight, and cbc_spin functions. The cbcnavlib allows you to use distances instead of
abstract values such as ticks.

Similarly, building and moving a servo is simple.

This code efficiently creates a servo that you can call quickly with the wait_servo function that
moves the servo fluidly to the desired position.

The Open Code library has functions for create movement as well.

You’re able to use functions that use distances instead of speed and time. These functions clean
up code and allow you to arc and spin easier than with timed functions.

The modular code libraries can be cloned from https://github.com/garrettsickles/
BotballOpenCode.git

Sources
[1] http://www.eng.fsu.edu/~dommelen/courses/cpm/notes/progreq/node2.html

