
CBC Hacking 2011: Vision Enhancements and Sensor Speedups (Part 1)
Jeremy Rand
Norman Advanced Robotics
jeremy.rand@ou.edu

CBC Hacking 2011: Vision Enhancements
and Sensor Speedups (Part 1)

1 Introduction
Since the CBC Botball Controller was introduced to Botball in January 2009, hackers have
tinkered with many of its components. But other components were less lucky. Some unhacked
components, e.g. the CBOB, were ignored because of the bricking risk. But there is one
component which has received virtually no modification even though it carries minimal risk of
bricking the CBC: the vision system. Matthew Thompson did discover a framerate enhancement
in 2009 [1], but no other vision hacking was attempted. Finally, that is changing. This paper
covers various vision hacks which can make the CBC vision system more flexible, more useful,
or faster. In addition, while the CBOB firmware itself is not getting hacked anytime soon, its
Chumby driver has had some useful hacks developed which heavily speed up sensor access. But
first, the obligatory disclaimer:

DISCLAIMER: Installing unofficial firmware on your CBC carries an inherent risk of bricking
your CBC. Usually, reflashing an official firmware will cure such a brick, but in rare cases this
will not work. KIPR’s warranty does not cover damage caused by an unofficial firmware, and
we are unable to offer a warranty ourselves (but if something does happen, please do notify us
so that we can attempt to help you fix it). If this concerns you, that should be a hint that CBC
hacking is not for you.

2 Installing the Hacks
To install the hacks discussed in this paper, download the latest userhook0 from the NHS
Patchset [2]. Install it on your CBC as you would an official update. The NHS Patchset
userhook0 will preserve the USER partition, so your programs, camera models, and mods will
still be intact. (This feature was copied from the NHS Patchset by KIPR early this year.)

3 Multiple Cameras
When the CBC firmware boots, cbcui sets up a file pointer to /dev/video0 (the first camera to
be plugged in). The vision system then reads images from this pointer. Any additional cameras
to be plugged in are assigned to /dev/video1, /dev/video2, etc., and are not touched by the
default CBC firmware.

By changing where this file pointer points to, other video devices can be accessed. The first
challenge was to allow the user program to interact with the vision system so that a program can
request a camera change. This was solved with a Linux feature called a FIFO. A FIFO ("first-

in, first-out") appears to programs to be a file in the file system, but is actually a queue of data
handled by the operating system which allows different programs to communicate in real-time.
The vision system sets up a FIFO in /tmp/switch_cam, and attempts to read a byte from it
every frame. When the user program wants to switch to the 2nd camera (starting with 1, not 0),
for example, it writes the byte 2 to /tmp/switch_cam. The next time the vision system checks
the FIFO, it discovers that a byte is available to be read, which yields the byte 2, and the vision
system then knows to switch to the 2nd camera.

Initially, switching cameras was implemented by closing the current camera device and opening
the requested one. This worked, but initializing a camera device causes a delay of about 1-2
seconds, during which the camera is inoperable. A faster solution was found, in which an array
of file pointers was created, and the switch camera function simply copied the requested file
pointer into the main file pointer used by the vision system. This means that once a camera is
opened, it stays open, even if the vision system switches to a different camera later. As a result,
switching cameras takes effect by the next frame. Up to 255 cameras can be multiplexed in this
manner, making the CBC's USB and power hardware the effective limiting factor. (There's a
possibility that leaving multiple cameras open can eat battery life faster, but so long as the CBC
is charged between game rounds, this shouldn't be an issue.)

A benefit of switching cameras rather than tracking multiple cameras simultaneously is that
since only one camera is processed per frame, the tracking speed is independent of the number of
connected cameras. Very few users require multiple cameras per frame, and the lag introduced
by the resulting increased CPU load would probably cripple the CBC's ability to do anything
else.

Example code to switch cameras:

unsigned char cam_id = 2; // Open 2nd camera; default is 1

int g_switch_cam = open("/tmp/switch_cam", O_WRONLY); // Open the FIFO

write(g_switch_cam, &cam_id, 1); // Write 1 byte to the FIFO

close(g_switch_cam); // Close the FIFO

3.1 Driver Settings for Additional Cameras
The framerate hack and associated driver settings which Matthew Thompson discovered in
2009 [1] will also work with cameras beyond the first. Just replace video0 with the appropriate
device number (e.g. video1). These settings will allow customizing the framerate, exposure,
white balance, brightness, contrast, and sharpness from within a KISS-C program.

4 Excluding the Rainbow
Both the XBC and CBC vision systems were designed to track colors which fall on the rainbow,
meaning that they do not track grayscale colors by default. This limitation is implemented by
blocking the user from setting the maximum saturation and maximum value to anything other
than 255. However, the XBC offered an undocumented library function which permitted those
two parameters to be set to arbitrary values, effectively allowing tracking of grayscale colors. In
the CBC, there is no such library function, so some hacking was necessary. A FIFO was setup
to receive requests to set the color models' HSV parameters (including max saturation and max

value), and this FIFO is checked once per frame in the color tracker. The hue parameters can
also be set to arbitrary values, and do not have to be close together like the vision GUI requires
(which is important for tracking grayscale, since grayscale colors can have any hue).

Some example code:

unsigned char model_op = 5; // Operation ID

unsigned char model_out = 2; // Output color model

unsigned char model_in_A = 1; // Input parameter A

unsigned char model_in_B = 300 >> 8; // Input parameter B

unsigned char model_in_C = 300 & 0xFF; // Input parameter C

int g_model_cmd = open("/tmp/model_cmd", O_WRONLY); // Open the FIFO

write(g_model_cmd, &model_op, 1); // Write 1 byte to the FIFO

write(g_model_cmd, &model_out, 1); // Write 1 byte to the FIFO

write(g_model_cmd, &model_in_A, 1); // Write 1 byte to the FIFO

write(g_model_cmd, &model_in_B, 1); // Write 1 byte to the FIFO

write(g_model_cmd, &model_in_C, 1); // Write 1 byte to the FIFO

close(g_model_cmd); // Close the FIFO

Available operation ID’s are:

● 5: Read model model_in_A, change minimum hue to ((model_in_B-1) << 8) |
model_in_C, write the result to model model_out.

● 6: Read model model_in_A, change maximum hue to ((model_in_B-1) << 8) |
model_in_C, write the result to model model_out.

● 7: Read model model_in_A, change minimum saturation to model_in_B, write the result
to model model_out.

● 8: Read model model_in_A, change maximum saturation to model_in_B, write the result
to model model_out.

● 9: Read model model_in_A, change minimum value to model_in_B, write the result to
model model_out.

● 10: Read model model_in_A, change maximum value to model_in_B, write the result to
model model_out.

The above example code reads model 1, changes the minimum hue to 300, and saves the result to
model 2. Note that in this system, models range from 1-4, not 0-3. If a command does not use
model_in_B or model_in_C, leave those values at 1 (do not use 0).

5 Boolean Transformations
Simple HSV ranges, even with the ability to exclude the rainbow, do not always offer sufficient
control to detect some desirable color models. A new FIFO-based command was setup to
perform Boolean operations on color models. This is easy, because of the way color models are
implemented. In the CBC firmware, each color model is stored as an array of bits, one for each
possible color (1 indicates that the color fits the model; 0 indicates that it does not). Since all
of these calculations are done when setting the color models initially, this lookup-table-based
method allows faster lookups than trying to do calculations on the fly. It also makes it possible
to do Boolean operations on those arrays of bits to combine or invert color models as we wish.

The Boolean operations AND, OR, and NOT are all available to be applied to color models,
as well as a COPY command. How is this useful? Let's say you want to track a stack of pink
and green poms. Make a color model for pink and a color model for green, then OR them
to get a color model that will track the entire stack as one blob. Or maybe you want to track
arbitrarily colored objects, but you know the background will be the white game board. Make
a color model for white, then NOT it to get a color model for everything else. You can make
any combination of AND, OR, and NOT, so you could, for example, implement "NOT (white
OR black OR pink OR green OR orange)" to find anything on the game board that isn't a board
marking or game piece (i.e. probably a team-placed structure). By De Morgan's Law [3], you
could also implement the same Boolean logic by using "NOT white AND NOT black AND NOT
pink AND NOT green AND NOT orange."

The same FIFO (/tmp/model_cmd) and code are used for these commands as for the functions to
exclude the rainbow, but with different operation ID’s. These ID’s are:

● 1 (Copy): model model_out = model model_in_A.
● 2 (Not): model model_out = NOT model model_in_A.
● 3 (And): model model_out = model model_in_A AND model model_in_B.
● 4 (Or): model model_out = model model_in_A OR model model_in_B.

Please note that changes to color models made through these FIFO methods will not survive a
reboot, and they will also be reset every time you enter the Vision screen on the CBC GUI. If
you want to use the Vision screen with modified color models, run your program which changes
the models via SSH [5] while already on the Vision screen.

6 Clipping the Image
It is common in Botball to only want a subset of the environment to be visible to the camera,
e.g. to avoid the camera seeing a bright green shirt on someone in the audience. KIPR’s
standard suggestion is to angle your camera down. This is nonoptimal, since the degree to
which you want to angle your camera may vary, which would require adding a motor and lots
of unnecessary mechanical complexity. As a more flexible alternative, I added additional FIFO
operation ID’s which clip the camera image to a user-specified minimum and maximum X and Y
coordinates on the image:

● 11 (MinX): Minimum X value = model_in_A.
● 12 (MaxX): Maximum X value = model_in_A.
● 13 (MinY): Minimum Y value = model_in_A.
● 14 (MaxY): Maximum Y value = model_in_A.

These commands are only reset when the CBC is rebooted. Due to some quirks of the CBC
firmware’s blob assembler, these commands also cause the Vision screen’s display of matched
pixels to glitch (the blob bounding box rectangles do display correctly). I haven’t measured the
resulting effect on the camera’s framerate, but this hack does reduce the necessary processing, so
it’s plausible that framerate could be helped by this hack (although probably not by much).

7 End of Part 1
That’s it for Part 1. Part 2 will continue where we leave off here, covering additional hacks
which can speed up camera vision and sensor access. See you there!

