
CBC Hacking 2011: Vision Enhancements and Sensor Speedups (Part 2)
Jeremy Rand
Norman Advanced Robotics
jeremy.rand@ou.edu

CBC Hacking 2011: Vision Enhancements
and Sensor Speedups (Part 2)

8 Welcome to Part 2!
Welcome back to CBC Hacking 2011. In Part 2, we’ll cover additional hacks which can speed
up camera vision and sensor access, which didn’t fit into Part 1.

9 Disabling Cameras
Botball teams have frequently noted that their CBC responds more slowly when a camera
is plugged in. This is not entirely due to the tracking calculations; the camera driver itself
generates a large quantity of interrupts which occasionally lags the Chumby. If you’ve seen
your robot occasionally overshoot a distance or turn, you may have noticed that this behavior
decreases or completely disappears when the camera is unplugged. In 2010, Matthew Thompson
discovered that closing the camera device eliminates these interrupts, and added a GUI option
to the NHS Patchset which completely disables the camera. Matthew used CBCLua [6] to
implement his own vision system, allowing him to selectively enable/disable the camera for that
custom vision system.

However, for Botballers who wish to use KIPR’s vision system without unnecessary lag, I have
added a feature to temporarily close a camera device. Just use the Multiple Cameras FIFO, but
add 0x80 to the camera number to close that camera device. This works with multiple camera
setups as well; an example usage might be:

1. Switch to camera 0x81 (close camera 1).
2. Switch to camera 0x02 (open camera 2).
3. Do stuff with camera 2.
4. Switch to camera 0x82 (close camera 2).
5. Switch to camera 0x01 (open camera 1).
6. You’re back at the default camera configuration.

A graph of the lag (in seconds) associated with cameras is below:

Notice that closing cameras is roughly equivalent to unplugging them. Remember that opening a
camera takes several seconds before a picture is visible, so only close a camera if you’re willing
to wait several seconds before using it again.

10 CBOB Batch Access: Speeding Up Sensor/Motor Access
The CBOB firmware itself is very risky to hack, due to the bricking risk. As a result, no such
hacking has been attempted. However, its source code is available, and reading it yields some
useful knowledge which can unlock undocumented features. Each time the user requests data to
be retrieved from or sent to the CBOB, a 6ms SPI transaction occurs. If the user is repeatedly
refreshing all the sensor and motor I/O, this can cripple the CBC’s CPU usage, since the 6ms
transaction busy-waits. (All attempts so far to make the 6ms transaction use less CPU have
resulted in randomly crashing the Chumby, so that method appears to be a no-go.)

However, it turns out that the CBOB can support reading or writing multiple data types

simultaneously. Specifically, the following useful undocumented packets exist:

● CBOB to Chumby (input)

○ sensors packet, which contains:

■ All digitals

■ All analogs

■ Battery voltage

■ All accelerometers

■ Analog pullup states

○ pid packet, which contains all 4 motor positions

● Chumby to CBOB (output)

○ pwm packet, which assigns PWM speeds for all motors

Each of these packets only takes 6ms to execute, compared to much higher delays if the
commands were sent individually. For example, the sensors packet would take 150ms if read
individually, which could be unusable depending on the application.

The pwm packet may look useless since PID control (mav/mrp) is preferable to PWM control
(motor). However, it can actually be very beneficial. Ever notice that when the two drive
motors are turned on, one occasionally starts before the other? This causes significant drift
which interferes with odometry. However, if you know roughly what PWM values your drive
motors need, you can start both motors at that PWM value using the pwm packet, which is
guaranteed to start both motors at exactly the same time, and then run the mav commands as
usual. Since the motors don’t accelerate much due to the mav (they’re already going close to that
speed), the drift will be much less.

The following code will allow you to access these undocumented CBOB commands:

#include <fcntl.h>

int cbob_batch_inited = 0;

int g_sensorsBatch;

int g_pwmBatch;

int g_pidBatch;

void init_cbob_batch()

{

if(! cbob_batch_inited)

{

 g_sensorsBatch = open("/dev/cbc/sensors", O_RDONLY);

 g_pwmBatch = open("/dev/cbc/pwm", O_RDWR);

 g_pidBatch = open("/dev/cbc/pid", O_RDONLY);

 cbob_batch_inited = 1;

}

}

void exit_cbob_batch()

{

if(cbob_batch_inited)

{

 close(g_sensorsBatch);

 close(g_pwmBatch);

 close(g_pidBatch);

 cbob_batch_inited = 0;

}

}

void sensors_batch(short *digitals, short *analog0, short *analog1, short

*analog2, short *analog3, short *analog4, short *analog5, short *analog6,

short *analog7, short *battery_voltage, short *x, short *y, short *z, short

*analog_pullups)

{

short sensorsData[14];

read(g_sensorsBatch, sensorsData, 28);

*digitals = sensorsData[0];

*analog0 = sensorsData[1];

*analog1 = sensorsData[2];

*analog2 = sensorsData[3];

*analog3 = sensorsData[4];

*analog4 = sensorsData[5];

*analog5 = sensorsData[6];

*analog6 = sensorsData[7];

*analog7 = sensorsData[8];

*battery_voltage = sensorsData[9];

*x = sensorsData[10];

*y = sensorsData[11];

*z = sensorsData[12];

*analog_pullups = (~sensorsData[13])&0xFF;

}

void write_pwm_batch(signed char pwm0, signed char pwm1, signed char pwm2,

signed char pwm3)

{

signed char pwmData[4];

pwmData[0] = pwm0;

pwmData[1] = pwm1;

pwmData[2] = pwm2;

pwmData[3] = pwm3;

write(g_pwmBatch, pwmData, 4);

}

void read_motor_positions_batch(long *pos0, long *pos1, long *pos2, long

*pos3)

{

long positionsData[4];

read(g_pidBatch, positionsData, 16);

*pos0 = positionsData[0];

*pos1 = positionsData[1];

*pos2 = positionsData[2];

*pos3 = positionsData[3];

}

11 Conclusion
CBC hacking may have slowed down since 2009, but is by no means dead. If you have a cool
idea for a CBC hack, let me know! I can be found on the Botball Community [4]. Happy
Hacking!

References
[1] J. Rand, M. Thompson, B. McDorman. Hacking the CBC Botball Controller: Because It
Wouldn’t Be a Botball Controller if It Couldn’t Be Hacked. Proceedings of the 2009 Global
Conference on Educational Robotics, July 2009.
[2] J. Rand, M. Thompson. NHS Patchset. https://github.com/JeremyRand/cbc , June 2011.
[3] Wikipedia Contributors. De Morgan’s laws. http://en.wikipedia.org/wiki/
De_Morgan%27s_laws , May 2011.
[4] Botball Youth Advisory Council. Botball Community. http://community.botball.org , June
2011.
[5] J. Rand, M. Thompson, B. McDorman. CBC Hacking 2010. Proceedings of the 2010 Global
Conference on Educational Robotics, July 2010.
[6] M. Thompson. CBCLua: Bringing Lua Scripting to Competitive Robotics. Proceedings of
the 2009 Global Conference on Educational Robotics, July 2009.

http://en.wikipedia.org/wiki/De_Morgan%27s_laws
http://en.wikipedia.org/wiki/De_Morgan%27s_laws
http://en.wikipedia.org/wiki/De_Morgan%27s_laws
http://en.wikipedia.org/wiki/De_Morgan%27s_laws
http://en.wikipedia.org/wiki/De_Morgan%27s_laws
http://en.wikipedia.org/wiki/De_Morgan%27s_laws
http://en.wikipedia.org/wiki/De_Morgan%27s_laws
http://en.wikipedia.org/wiki/De_Morgan%27s_laws
http://en.wikipedia.org/wiki/De_Morgan%27s_laws
http://en.wikipedia.org/wiki/De_Morgan%27s_laws
http://en.wikipedia.org/wiki/De_Morgan%27s_laws
http://en.wikipedia.org/wiki/De_Morgan%27s_laws
http://en.wikipedia.org/wiki/De_Morgan%27s_laws
http://en.wikipedia.org/wiki/De_Morgan%27s_laws
http://en.wikipedia.org/wiki/De_Morgan%27s_laws
http://en.wikipedia.org/wiki/De_Morgan%27s_laws
http://en.wikipedia.org/wiki/De_Morgan%27s_laws
http://en.wikipedia.org/wiki/De_Morgan%27s_laws

