
Path-finding with Dijkstra’s Algorithm
Benjamin Woodruff
odetopi.e@gmail.com, Duncan U. Fletcher High School

Path-finding with Dijkstra’s
Algorithm

1 Abstract

As we develop and advance in the Botball
competition, the need arises to build more
and more intelligent systems. Path-finding
isn’t only about reducing the repetitive work
on programmers, but also allowing robots to
make decisions on the fly. As an alternative
to techniques such as line-following, or as an
aid, path-finding can take advantage of the
largely static Botball board layout. This pa-
per seeks to describe a technique and exam-
ple implementation by which a perfectly op-
timal, non-intersecting, easily navigable path
can be found. In addition, this document out-
lines surrounding support systems for work-
ing with such paths, and putting things into
practice.

2 Reasoning

2.1 An Example Problem

Imagine you have a movement library, such
as CBCJVM’s [5], that allows for simple ge-
ometric movements and position tracking1

[13]. The robot successfully finds a set of
blocks with it’s camera, but now you have to
figure out how to navigate back to your drop-
off point. There’s a few simple answers, such
as reversing the movements that you took
to get the blocks returning you to a known
point, but all of these are inefficient. If you
try to simply move from one point to another,
using position tracking, you have no easy way
of handling if there is an object in the way of
your path.

2.2 How Pathfinding can Help

A proper path-finding system already knows
the layout of obstacles on the board, ei-
ther through static (programmer) input, or
through dynamically (sensor) inputted infor-
mation. With this, the system should be able
to determine the best way to get from Point
A to Point B, avoiding everything else in-
between [7]. This can then be distilled into
a simple set of actions, such as

1. Rotate 37 degrees clockwise
2. Move 36 cm forward

1With the right calculations, as long as all your motions happen through a single movement library, you
should be able to dynamically determine exactly where you are at any point in time.
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3. Rotate 84 degrees counter-clockwise
4. Move 15 cm forward

3 A* (A-Star)

One way of solving such a problem is to
turn the board into a grid, and to utilize the
simple A* algorithm to then generate a path
on the grid. Such a path is then traced and
turned into a set of movements, like above.
Unfortunately a specific description of the al-
gorithm is beyond the scope of this document,
but there is a plethora of places, online and
otherwise, to find such a description. [3]

However, such a system works in a non-
optimal manner. Our robots do not operate
on a grid, and, as a result, the generated
paths can end up including far more points
than ideal. Additionally, the A* algorithm
does not guarantee that the resultant path,
even in a grid setting, is the shortest one.

While this is an interesting system to work
with, and an even more interesting proof of
concept, the more geometrically aligned Di-
jkstra’s algorithm appears a better choice.

4 Graph Theory

Let’s start by turning the board into the
simplest representation we can: a set of line
segments. Each of these line segments have
two end-points, or nodes, and a group of lines,
sharing nodes at vertices form polygons. The
board can be represented through a set of in-
accessible polygon areas, and otherwise open
area.

When you are forming an optimal path,
assuming the robot itself is a point-mass2,
the only nodes included in the path will be
the starting point, the ending point, and the
vertices of the polygons on the map. This
assumption greatly reduces our search-space.

4.1 Line-of-Sight

As obvious as it seems to us that the robot
cannot simply pass through pvc-pipe (exclud-
ing robots with treads or other advance ap-
paratuses), we must define such in our algo-
rithm. The obvious way of doing such is to
declare that from one node, the only other
directly accessible nodes are those within the
line-of-sight of the current node.

2The robot is treated as infinitely small: as though it has no radius. This is not accurate, but it makes
working with things easier, and as is pointed out later in this paper, we can make up for this with some
polygon expansion.



Looking around, there don’t seem to be
many good published line-of-sight algorithms
for our purposes. Most, often for graphical se-
tups, deal with pixel-level, or grid-based sys-
tems. [6]

As a result, I attempted, with some suc-
cess, a näıve technique, derived from ray-
tracing systems.

4.1.1 Ray-Tracing

Ray-tracing is a common technique for high
quality 3d rendering, and such algorithms lay
at the center of multi-million dollar programs,
such as Pixar’s Renderman software, used
in countless Disney-Pixar flicks, as well as a
wide variety of other Hollywood blockbusters.
[8]

The algorithm is a near brute-force ap-
proach at mimicking mother-nature. We can
pretend that the sun, instead of sending out
continuous particle-waves, sends out count-
less numbers of rays, which follow rules of
refraction. Some of these end up in our view,
others don’t. The density of returned “rays”
per unit area (per pixel) determines the re-
sultant brightness. If rays don’t get to a cer-
tain area, we end up with shadows (See where
we’re going?). [11]

4.1.2 Reverse Ray-Tracing

One might say this implementation is ex-
tremely inefficient, and it is. Many of the
rays get lost in the abyss of the computer’s
RAM. Perhaps they enter the world of Tron,
and get taken into the games, to be tortured,
only to be killed by the evil garbage collector
(After all, we’re using a high-level managed

language like Java, right? If not, imagine it’s
the dark lord dealloc.).

As a result, there’s an alternative strat-
egy, although not always applicable, or as
ideal. If, for example, the light-source is lo-
cated at the same point as the view-point,
we can have each of our objects send emit
rays back towards the view-point, instead of
the other way around, hence the algorithm’s
name. Along the way, they can collide with
other objects and such, but not near as many
rays are wasted, and such an algorithm is now
far from brute-force. [12] Such an algorithm
is typically O(n), where n is the number of
objects on the field3.

4.1.3 Lighting up the Board

Imagine the robot is acting as a lamp on
the board. If it sends off rays of light, only
the ones intersecting with walls, or lines, are
stopped, and all other rays continue traveling
infinitely.

3This is known as Big-O notation. It relates the execution time of an algorithm to the size of the dataset
provided. It is purely about proportionality. O(n) means that the execution time is directly proportional
to the data size, n. Big-O notation is useful because it makes the bold statement that performance only
matters as a system of scale.



4.1.4 Reverse Ray-Tracing and Line of
Sight

Let’s have each node on the board draw a line
segment to the current node on the board.
From there, we can check to see if this line
segment drawn intersects any polygons on the
board. If it does, then we can conclude that
the node is not directly visible or accessible.

4.1.5 Optimizations

Performance wasn’t an important goal for our
system, but if you need more speed from your
system, these a few notes can be of use when
optimizing.

• Visibility is mutual, meaning that if one
point is visible from the other, the op-
posite must be true. [12]

• If a board is statically laid out, visibil-
ity never changes, and so such results
can be cached.

4.2 Dijkstra’s Algorithm

Dijkstra’s4 Algorithm is an extremely popu-
lar algorithm, excellent for deducing perfectly
optimal paths in a variety of situations, and
for it’s design, it has been proven mathemat-
ically optimal in terms of performance, exe-
cuting in O(n2) time, where n is the number
of vertices, or nodes. It has been used for
both the obvious, such as in navigation sys-
tems, to the not-so-obvious, such as phone-
call routing.

Dijkstra’s Algorithm works to reduce the
“cost” of travel. For simplicity sake, we only
count the cost of translational movement,
which parallels the distance the robot trav-
els5. It’s quite possible, and trivial, to modify
the algorithm to factor in the “cost” of rota-
tional movements and the like. However, for
our example, whenever we say cost, read “the
distance to travel”.

4.2.1 Pseudo-code [4]

1. Make a dictionary6 relating each node
to the current shortest path to that
point. For each node, let the beginning
undefined path equal infinity7, with the
exception of the starting node, which
you should set the cost of navigation to
as zero (Ending where you start takes
no time, and thus “costs” nothing).

2. Make a queue8 of all the nodes on the
graph, excluding the starting one.

3. Let the current node be the starting
node.

4. For each node in the queue, calculate
the cost of the path through the cur-
rent node to that node. If this new cost
is less than the previous least-cost path
to that node, replace it in that dictio-
nary you made.

5. Select the lowest cost path (where the
node is in the queue). This is an op-
timal path. If this path is to the end-
node, you can stop. If all the nodes

4The name is a Dutch one. Interestingly, it is pronounced “dike-struh” [10]
5A sidenote: as Dijkstra’s algorithm works in a purely relational manner, the units used don’t matter.
6A dictionary, or a hash-map or hash-table is a data structure that relates one piece of data to another.

Thinking of it in terms of an actual dictionary, you relate the key, the word, with the value, the definition.
7If this isn’t possible or easy in your environment, assign it some special constant, such as null or

Python’s None, and note that special value for later on, as I did in my Python reference implementation.
Work your later numerical checks around this.

8For our purposes, this can simply be an array, list, or set of some sort.



have infinite cost, and you have not gen-
erated a path to the end-node yet, there
is no possible path.

6. Remove the final node from this least-
cost path from the queue, and make it
the new current node. Jump back to
step 4.

4.2.2 An Example
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Following the above diagram and de-
scribed algorithm, we can trace the execution
of such. Data structures will be shown in a
Pythonic manner. Specifically, the dictionary
will be expressed in the form {key=value}
[2], and the list/queue will be expressed as
[a, b, c] [1].

1. Our dictionary starts as {a=0, b=∞,

c=∞, d=∞}.

2. Our queue starts as [b, c, d].

3. Our current node starts as a.

4. The only directly accessible nodes from
node A are B and C, each with a
cost of 10 and 15 units respectively.
Our dictionary becomes {a=0, b=10,

c=15, d=∞}

5. Our least-cost path from the queue is
through node B.

6. Our queue becomes [c, d] as our cur-
rent node becomes node B.

7. The only directly accessible node from
node B that hasn’t already been visited
(is still in our queue) is node D. The
cost to get to node D through node B
is 40 units. 40 units is less than ∞,
so our dictionary becomes {a=0, b=10,

c=15, d=40}.

8. Our least-cost path from the queue is
through node C.

9. Our queue becomes [d] as our current
node becomes node C.

10. The only directly accessible node from
node C that hasn’t already been visited
is node D. The cost to get to node D
through node C is 30 units. 30 units
is less than 40 units, so our dictionary
becomes {a=0, b=10, c=15, d=30}.

11. We now have our optimal path to node
D, our end-node, in the form of a →
c→ d.

5 Existing Problems

5.1 Working With a Radius

Up this point, we’ve treated our robot as in
infinitely small entity. Unfortunately for us,
the vast majority of robots have a non-zero
volume. A simple way of doing this is to out-
set each polygon that composes the board a
distance equal to the radius of the robot, and
to work with that outset version. There are
several general ways of doing this.



5.1.1 Constant Distance

The most accurate way to outset a poly-
gon is to draw a new shape around the poly-
gon, ensuring a constant distance. Unfortu-
nately, the behaviors of this system can be
somewhat complex, as seen in the example
diagram. Outward-facing vertices form arcs,
and so the end result is not a polygon. If one
wanted to simulate this system, they could
form approximations of these curved areas by
circumscribing polygons around them.

5.1.2 Shifting the Edges

A much simpler approach, is to simply
outset the edges, forming new lines, and then
to connect them. The näıve algorithm used
in our sample implementation to expand each
polygon is as follows:

1. For each line segment, find it the slope
of a line perpendicular to it (find the
negative inverse, −∆x

∆y
).

2. Find a point on the original line seg-
ment.

3. Using the point and perpendicular
slope, derive a line segment extending
from a (any) point on the original line
segment outward 9, with a length equal
to the desired outset distance.

4. Take the second point of the newly
formed line-segment. Form an infinitely
extending line that passes through that
second point with the slope of the orig-
inal line segment (a parallel line).

5. Once you have these parallel lines for
each edge of the base polygon, find the
intersection points10 for the lines cor-
responding to consecutive edges on the
base polygon. The new polygon can be
formed from these intersection points.

A few special handlers should be added to
deal with horizontal and vertical lines. Many
languages include support for −0 and ± inf
in their floating-point implementations, and
these may be of use.

9You can easily determine what way is outward if the polygon’s points are in a known order, such as
clockwise or counter-clockwise

10To do this, think back to algebra, where you set one equation equal to the other and solved



The disadvantage of such an approach can
be seen when one is working with very acute
angles. Fortunately for us, most board lay-
outs consist of little more than right angles,
and with right and obtuse angles, such a dis-
advantageous effect is minimized.

5.2 Edge Cases

Our line-of-sight algorithm works for the
majority of cases. However, when first con-
ceived, an “edge”-case was ignored. If the
point of perspective and the viewed point are
both points on the same polygon, it is pos-
sible that a our line-of-sight algorithm would

fail to catch that the points are not visible.
Simply saying that if two nodes are on the

same polygon they are not visible from one
another would be an inaccurate statement, so
a more intricate solution to the conundrum
had to be found.

The system that we ended up using was a
rather blunt one.

5.2.1 Polygon Triangulation

Polygon triangulation refers to a common
practice in graphics programming by which
one takes an arbitrary polygon, convex11 or
concave 12, and turns it into a set of trian-
gles. This is done simply because triangles
tend to be easier to work with, as far more
assumptions can be made about them. [9]

There are a variety of ways of perform-
ing such a task, some easy, some complex.
Rather than implementing our own system,
we managed to procure a piece of Java code
to do the task, and we ported the system over
to Python.

The Java code was donated under pub-
lic domain to the project by asarkar on the
#xkcd-cs irc channel on irc.foonetic.net.
(Thanks, asarkar!)

11A polygon that only has outward facing vertices, an example being any regular polygon.
12A polygon that “caves” in upon itself.



5.2.2 Applying Triangulation to Line-
of-Sight

On top of our prior checks, our system
does the following for each polygon on the
map:

1. Triangulate the polygon.

2. Perform additional intersection checks
with the lines formed by triangulation.
If there is an intersection, the nodes are
not visible.

3. Check to see if our line is the same as
one of the lines formed by the triangu-
lation. If so, the nodes are not visible
from one another.

6 Conclusion

6.1 Reference Implementation

Our reference implementation is written in
Python, or more specifically, in an implic-
itly statically typed subset of the language,

known as RPython. The code has been spe-
cially crafted to run under Jython 2.5 and
up, CPython 2.5 and up, and CPython 3.1
and up13. Other versions and implementa-
tions should work, but simply have not been
tested.

The implicitly static nature of the design,
and the use but lack of dependence of on
Object-Oriented Programming should make
porting to other languages such as Java and
C trivial. The end implementation, despite
it’s complexity, is short (less than 1000 lines
of code).

The code is available on Github under
the GNU GPLv3 at https://github.com/

CBCJVM/python-pathfinding.

6.2 Closing Thoughts

The entire system was designed in a modu-
lar form. If nothing else, this paper demon-
strates the powers of encapsulation and sub-
division. While each algorithm is not perfect
performance-wise, they work well enough for
the desired purpose, and more importantly,
a superior algorithm could easily be dropped
in as a replacement, thanks to the modular
design.

As a more personal message, opening this
technology to the community should hope-
fully provide small struggling teams with a
powerful tool, and make next year’s robots
all the more interesting.

Keep Hacking!

13The Python 2.x and 3.x series are not entirely compatible however they share many similarities, such
that if one is careful, they can support both with the same code-base. Python 3.x is meant to replace the
2.x series, but both are currently supported by the Python Software Foundation, and both are in common
use.
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