
Position Tracking at the Next Level
Wesley Myers
wmyers@andrew.cmu.edu
Dr. Eugene Myers
cedarhouse@comcast.net

Position Tracking at the Next Level

Introduction

This paper presents how to navigate using a new version of position tracking.
Our first version of position tracking was developed several years ago for Botball [1][2].
Position tracking is where the robot keeps track of its position by monitoring its motion.
Our previous papers describe our old implementations of this system. This paper will
discuss a new method learned during the Author’s coursework at Carnegie Mellon
University. This solution is for a differential drive robot.

Motivation

In the ever-changing conditions of
Botball, an accurate method of keeping track of
a robot’s position is needed to achieve an edge
over other teams. Our old position-tracking
algorithm was relatively simple. However, this
simplicity caused errors to accumulate every
time the robot executed any degree of turning
motion. Turning in a given direction resulted
in an error in the robot’s direction information
and turning in the opposite direction was not
sufficient to correct the error. The only way to
correct the error was to align the robot along a PVC pipe by driving into it (for
alignment) and then use the camera to localize. With the team’s entry into the KIPR
Open, a more accurate position tracking algorithm was necessary.

With the metal parts in the KIPR Open, we realized that weight is a significant
factor, which causes more error in our navigation system. So we must achieve better
navigation to perform our tasks. The figure above illustrates such an example that weight
causes with rubber tires. What this means is that the movement of our robot can cause
our wheel radius to change. By having better code for navigation, we can achieve more
accurate navigation even with this varying condition. The VEX wheels do not have as
much of a problem with this as the Lego wheels, none-the-less this new algorithm helps
in either case.

Runge-Kutta

The Runge-Kutta Method is a method of approximating the solution of ordinary
differential equations (ODEs). This particular method we chose involves the fourth order

method. What that means is that the error per step is t5, while the total accumulated error
is t4. In this case t refers to the step size, or the size of the interval. This method provides
for correction in the error caused by the turning motion and is implemented in our KIPR
Open robots.

The Method

This section describes how to basically implement this method of position
tracking [3]. A later section provides basic code to implement this in C.

Step 1: Write a loop to poll the motor encoders at intervals. Use these values to calculate
the left and right wheel velocities in “ticks” or degrees per second. This can best be done
using the equation below.

vl = (current_left_motor_encoder_ticks – previous_left_motor_encoder_ticks)/(time_elapsed_since_last_poll)
vr = (current_right_motor_encoder_ticks – previous_right_motor_encoder_ticks)/(time_elapsed_since_last_poll)

Step 2: Based upon these wheel velocities, we can convert them into linear velocities by
multiplying the values by the radius of the wheels.

Vl = vl*R
Vr = vr*R

Step 3: With these values we can now get the linear and angular velocity of the robot. L
is the distance between the contact point of the wheels on the ground.

ν = (Vr + Vl)/2
ω = (Vr – Vl)/L

Step 4: Given that we have the linear and angular velocity, we need to find (x, y, θ). That
involves solving the below non-linear system of differential equations. Since the code
cannot simply solve the ODE, we must use a numerical integrator like a fourth order
Runge-Kutta to approximate this position vector. Let t be the time elapsed since we last
ran the integration loop and n represent the current iteration of the loop.

Runge-Kutta 4th Order Equations

 Here are the equations to obtain the desired (x, y, θ) position of the robot using
the Runge-Kutta 4th Order Equations [4].

Using these equations, one can now find the (x, y, θ) position of the robot.

Go To Point

 One of the most basic uses of position tracking is being able to tell the robot to go
to a point. This solved a basic problem with our old algorithm. The old algorithm was
based on keeping the robot pointed at the destination and stopping the robot when it came
within a certain distance of the objective. Though simple to implement, the distance
tracking and aiming involved two distinct operations, which had some corner cases when
the robot got close to the destination. The usual manifestation was that the robot would
turn slightly as it neared its destination, as it desired to stay pointed at the endpoint. This
created some problems, as the robot may not necessarily be pointing in the desired
direction.
 The new algorithm is very simple. Basically the wheel speed varies by the
distance between the current location and the desired location. It is as simple as that.

Example Code

 In this section we give the position tracking algorithm in basic c-style form.

Results

 What we got was a much more precision in our position tracking code. Like any
position tracking, error accumulates and at some point we must localize. However with
this code, we can go much longer without having to localize.

References

[1] Wesley Myers and Ethan Myers. “Navigation Using Position Tracking.” Proceedings
of the National Conference on Educational Robotics. Honolulu, Hawaii. July 10-13,
2007.

[2] Wesley Myers and Ethan Myers. “Position Tracking Using the XBC.” Proceedings of
the National Conference on Educational Robotics. Norman, Oklahoma. July 7-10, 2006.

[3] Choset, Howie. “Lab 3: Ded Reckoning.” 16-311 Introduction to Robotics. Carnegie
Mellon University, 29 Dec 2010. Web. 13 Jun 2011.
<http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/16311/www/current/labs/Lab%2
03.html>

[4] Kaw, Autar. “Runge-Kutta 4th Order Method for Ordinary Differential Equations.”
University of South Florida: Numerical Methods 13 OCT 2010: 1-7. Web. 13 Jun 2011.
<http://numericalmethods.eng.usf.edu/mws/gen/08ode/mws_gen_ode_txt_runge4th.pdf>

