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Position Tracking at the Next Level 
 
Introduction 
 

This paper presents how to navigate using a new version of position tracking.  
Our first version of position tracking was developed several years ago for Botball [1][2].  
Position tracking is where the robot keeps track of its position by monitoring its motion.  
Our previous papers describe our old implementations of this system.  This paper will 
discuss a new method learned during the Author’s coursework at Carnegie Mellon 
University.  This solution is for a differential drive robot. 
 
Motivation 
 

In the ever-changing conditions of 
Botball, an accurate method of keeping track of 
a robot’s position is needed to achieve an edge 
over other teams.  Our old position-tracking 
algorithm was relatively simple.  However, this 
simplicity caused errors to accumulate every 
time the robot executed any degree of turning 
motion.  Turning in a given direction resulted 
in an error in the robot’s direction information 
and turning in the opposite direction was not 
sufficient to correct the error.  The only way to 
correct the error was to align the robot along a PVC pipe by driving into it (for 
alignment) and then use the camera to localize.  With the team’s entry into the KIPR 
Open, a more accurate position tracking algorithm was necessary. 

With the metal parts in the KIPR Open, we realized that weight is a significant 
factor, which causes more error in our navigation system.  So we must achieve better 
navigation to perform our tasks.  The figure above illustrates such an example that weight 
causes with rubber tires.  What this means is that the movement of our robot can cause 
our wheel radius to change.  By having better code for navigation, we can achieve more 
accurate navigation even with this varying condition.  The VEX wheels do not have as 
much of a problem with this as the Lego wheels, none-the-less this new algorithm helps 
in either case. 
 
Runge-Kutta 
 

The Runge-Kutta Method is a method of approximating the solution of ordinary 
differential equations (ODEs).  This particular method we chose involves the fourth order 



method.  What that means is that the error per step is t5, while the total accumulated error 
is t4.  In this case t refers to the step size, or the size of the interval.  This method provides 
for correction in the error caused by the turning motion and is implemented in our KIPR 
Open robots. 
 
The Method 
 

This section describes how to basically implement this method of position 
tracking [3].  A later section provides basic code to implement this in C. 
 
Step 1:  Write a loop to poll the motor encoders at intervals.  Use these values to calculate 
the left and right wheel velocities in “ticks” or degrees per second.  This can best be done 
using the equation below. 
 
vl = (current_left_motor_encoder_ticks – previous_left_motor_encoder_ticks)/(time_elapsed_since_last_poll) 
vr = (current_right_motor_encoder_ticks – previous_right_motor_encoder_ticks)/(time_elapsed_since_last_poll) 
 
Step 2:  Based upon these wheel velocities, we can convert them into linear velocities by 
multiplying the values by the radius of the wheels. 
 
Vl = vl*R 
Vr = vr*R 
 
Step 3: With these values we can now get the linear and angular velocity of the robot.  L 
is the distance between the contact point of the wheels on the ground. 
 
ν = (Vr + Vl)/2 
ω = (Vr – Vl)/L 
 
Step 4: Given that we have the linear and angular velocity, we need to find (x, y, θ).  That 
involves solving the below non-linear system of differential equations.  Since the code 
cannot simply solve the ODE, we must use a numerical integrator like a fourth order 
Runge-Kutta to approximate this position vector.  Let t be the time elapsed since we last 
ran the integration loop and n represent the current iteration of the loop. 
 

 
 
 
 
 



Runge-Kutta 4th Order Equations 
 
 Here are the equations to obtain the desired (x, y, θ) position of the robot using 
the Runge-Kutta 4th Order Equations [4]. 
 

 
 

 
 
 
Using these equations, one can now find the (x, y, θ) position of the robot.  
 
Go To Point 
 
 One of the most basic uses of position tracking is being able to tell the robot to go 
to a point.  This solved a basic problem with our old algorithm. The old algorithm was 
based on keeping the robot pointed at the destination and stopping the robot when it came 
within a certain distance of the objective.  Though simple to implement, the distance 
tracking and aiming involved two distinct operations, which had some corner cases when 
the robot got close to the destination.  The usual manifestation was that the robot would 
turn slightly as it neared its destination, as it desired to stay pointed at the endpoint.  This 
created some problems, as the robot may not necessarily be pointing in the desired 
direction. 
 The new algorithm is very simple.  Basically the wheel speed varies by the 
distance between the current location and the desired location.  It is as simple as that.



Example Code 
 
 In this section we give the position tracking algorithm in basic c-style form. 
 

 
 
Results 
 
 What we got was a much more precision in our position tracking code.  Like any 
position tracking, error accumulates and at some point we must localize.  However with 
this code, we can go much longer without having to localize. 
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