
Rapidly-Expanding Random Trees and their Application to Botball
Wesley Myers
wmyers@andrew.cmu.edu

Rapidly-Expanding Random Trees and their Application to Botball

Introduction

This paper discusses our exploration into the development of path planning in
Botball. Here we tackle this problem using Rapidly-Expanding Random Trees (RRTs)
[1]. With the robot being able to keep track of its position, path planning can be quite
useful to move around the board.

Motivation

In Botball there are times in which the robot needs to get from one point to
another on the game board. However, sometimes there is not always a good way to know
how to do this navigation unless it is preplanned. In robotics navigation there are many
ways to do path planning. A robot could use simple waypoint navigation to move
around, or use a Voronoi path navigation system for example. Each method has its own
tradeoffs and benefits. We decided to use Rapidly-Expanding Random Trees (RRTs) to
solve the robot navigation problem. The benefit of RRTs is that a robot can quickly
generate a safe path through the workspace of the game board. This is best used in
conjunction with position tracking code.

How a RRT Works

A RRT works as follows. Given an initial configuration and a final configuration,
the algorithm finds a path that guides the robot between the two configurations. Nodes in
the tree are represented by a configuration and a parent node (think of this a tree that is
represented by a Linked List with multiple children). The initial configuration has no
parent since it is the first node, the next node’s parent would be the initial node, etc. Let
us call the initial configuration qA and the final configuration qB. First a random
configuration is chosen somewhere in the configuration space. If that configuration does
not collide with any obstacles, a “branch” of size epsilon is grown towards the new
configuration. The other tree then finds the node closest to the newly grown
configuration of the first tree and grows a new node towards the first tree’s new node by
size epsilon (represented by e in the below diagram). The two roles then swap for the
next iteration. The trees keep on growing towards each other until they “touch.” Once
this occurs, a path has been found. The diagram below illustrates how this works.

Path Extraction

At this point, the RRT has declared that a path exists; so next a path must be
extracted. Extracting a path can best be done by backtracking through the tree’s nodes.
Backtracking stops when the node doesn’t have a parent (initial or final configuration).
These two separate paths are then concatenated and the result is the path from qA to qB.
See Diagrams section for illustrations.

Path Smoothing

At this point there is a path, however the path is not very smooth. What is desired
is a path with as few nodes as possible. There are many algorithms that can achieve this.
One method is to choose two random nodes on the path. If there are no collisions
between the two configurations and any obstacles, then delete all the nodes between the
two nodes. Repeat this process a
number of times until satisfied.
The figure to the right illustrates
this idea. If you have nodes A
and B, and there is no collision
between the nodes, then you can
smooth the bath by removing the
nodes in the middle. If there is an
obstacle, then the path cannot be
smoothed with those two nodes as
illustrated in the bottom of the
diagram.

Collision Detection

In order to properly execute an RRT, some form of collision detection must be
present. This can be done in multiple ways. Here we will discuss two different ways to
do this.

The first step is to have a representation of the world. The world is the robot and
its surroundings. The simplest way to represent the robot is by the form of a square or a
rectangle. “Padding” to the exterior of the robot ensures that the robot does not come
close to walls and obstacles. The RRT will search for a path, and sometimes that path
will go along the edge of an obstacle. Since navigation is never perfect, the more space
between an object and the robot, the better. Next, a representation of the world bounds is
needed. This can best be done using points to form a closed polygon. This yields the
possibility of now forming lines to represent the robot’s world. Also represent any
objects within the world as a polygon (points). These polygons are placed into an array
for easy access.

There are several options as to how detect a collision between a robot and an
object. The simplest would be to see if the rectangle that the robot forms intersects with
any of the lines from the polygons that represent objects.

The other, more complicated, method is the
Separating Axis Theorem. The theorem states that
for objects lying in a plane, given two convex
shapes, there exists a line onto which their
projections will be separate if and only if they are
not intersecting. The separating axis is the line for
which the objects have disjoint projections. The
separating line is perpendicular to the separating axis
and is in between the two objects. This line cannot
be drawn if the objects overlap. The figure to the
right illustrates this concept. This algorithm is much
more complicated, but is much more reliable as
compared to the basic one previously discussed.

Diagrams

 In this section, we discuss a few results that were generated in matlab for initial
testing.

This first diagram shows a path starting at
configuration (0, 0, pi/4) and ending at (10,
10, pi/4). What is shown here are the two
trees navigating through a complicated
workspace. The robot in this case is small
enough to navigate between the blocks. Here
one can see that the trees seem to weave their
way through the world until they touch.

This diagram shows what happens when the
robot is simply too large to fit between the
obstacles. What is important to note here is
that two paths could have occurred. One can
see the obvious path that was created. The
other one that could have been created is
where the green and red branches came close
to each other in the bottom right of the
diagram. Either of these two paths could
have occurred. The randomness of this
algorithm yields a random path.

This diagram illustrates path smoothing. The
tree gives a very jagged path from the
starting configuration to the ending
configuration. By smoothing the path, the
robot can rotate in place, drive, rotate, drive,
etc. The green line is the extracted path and
the red line is the smoothed path.

This diagram illustrates all the components. The green and red lines are the two separate
trees grown from the starting and ending configurations. The black line is the extracted
path from the two trees. The cyan line is the smoothed path.

Results

We were able to achieve path planning with the robot in the world. We decided
not to implement this in the KIPR Open. However this could be of great use in future
years. This can give the robot more autonomy when it comes to interacting with the
world. In the KIPR Open, robots are able to communicate with each other, so thus this
can give teams a great advantage. If they are able to maintain an awareness of the team’s
robot’s positions on the table, then this algorithm can be used by the robots to avoid each
other.

References

[1] Kuffner, J. J. Jr., and LaValle, S. M. 2000. RRT-Connect: An efficient approach to
single-query path planning. Proc. IEEE International Conference on Robotics and
Automation (ICRA-2000).

