What is a Robot
Goals

e To help students understand what a robot is

* To understand the basic components needed for a robot
0 Mechanical Structure, Effectors, Power, Computer, Sensors, Computer Program

* To understand the types of tasks and jobs robots perform
* To learn terms and vocabulary related to robots

Preparation
Project slides up on a board or provide print outs for each group

Activity
Follow the slides and complete the activities

What is a Robot? Activity

Objectives:
e What is a robot?

 What do you need to build and control a
robot?

 What types of tasks/jobs do robots perform?

e What terms do we need to know?

What robots do we use everyday?

e Create a poster/list that describes what robots
we use everyday, and why these are robots

e Share out!
 Compile a list of the robots

What makes a robot a robot?

List 5 or 6 words or phrases that
yvou think make a robot a robot:

1. Draw a “+” if you agree
2. Add one more component
3. Toss KIS

Can we add to it?

Structure
Effectors
Sensors
Power
Computation
Information

Humans vs. Robot Subsystems

People
Bones
Muscles
Senses
Digestion/Respiration
Brain

Knowledge

Robots
Mechanical Structure
Effectors
Sensors
Power
Computer
Computer Program

Structure

Robot Structure

e Provides support to the
robot-like your skeleton

* Joints in structure
normally have effectors
(like muscles) attached

e Holds sensors in position

Effectors

e Used to change the state of the robot itself
e Used to change the state of the world
e Examples:

O Motors, thrusters, arms, or legs

O Voice synthesizers, buzzers, and lights

YV
-m@
4

Sensors

Proprioceptive sensors

 Report on the current state of y ‘((a},
the robot- you know you are « Il . / N\
sitting down even with your S a7
. 2D ‘ -

eyes closed Vo o
y o&uﬁ'*

External sensors

b

e Report on the current state of - S '_
o . . .' . ,>

the environment the robot is in //\)»jé é_,) .

O Light sensors, range y SR
sensors, touch sensors, etc. /((W

Power (Energy)

* Power Source
O Batteries, solar panels
O Springs, hydraulics, pneumatics

O Nuclear reactor

e Power Distribution
0 Wires

* Power management
O Regulators

0 Converters

Computation

Used to interpret sensor
values; perception

Used to generate proper
effector commands

Used to project effects
and plan actions

Information

* |nternal Information

O How to interpret sensor
values

O How to generate effector
commands

O Internal state & history

o External Information

0 World, user & predictive
models

* Program
0 Determines robot actions
0 Forms robot plans
O Debugging - introspection

Introductory Kit Overview

#1 KIPR Link Controller
#1 KIPR Link Power Adapter
#1 KIPR Link Mini USB Cable
#1 Botball Screwdriver
#1 11/32 Wrench
#1 1/4 Wrench
#1 Introductory LEGO bag
#2 Motors - SG-5010 Standard Motor
#2 SG-5010 Servos
#1 Bag of Screws & Stand-offs
#1 Bag of Push Rivets
#1 Bag of Brass Screws
KIPR Metal Parts to include:
#1 Metal Ball Caster
#2 Motor Brackets
#1 Chassis
#1 Angle Bracket
#2 Servo Round Horn, #1 Long Horn

You can access the kit components on Sensors to include:

our online store: #1 Light Sensor
#1 Small Touch

http://botballstore.org/product/link-Introductory-kit #1 Large Touch
#1 Long Lever Sensor
#1 ET Rangefinder
#2 Small IR

Introductory Kit Scavenger Hunt Activity

Goals

e Learn the kit components and be able to identify individual parts

e Be able to group parts into categories (KIPR Metal Parts, LEGO, Sensors)
e Distinguish between a motor and a servo motor

e Keep track of parts

Preparation
Place all of the kit components out on a table and have the students use:

1. A checklist (something very helpful in engineering) to identify and account
for all parts (printable example on next slide)

2. Have the students use their science/engineering/robotics notebook to make
their own checklist to account for all parts

Resources

The online KIPR store is a good resource to help with the identification of specific

kit components:

http://botballstore.org/product/link-Introductory-kit

(instructions on resource slide)

*Having a tool box or plastic bins with lids to store kit components is
helpful and keeps them from getting lost in the classroom

Introductory Kit Checklist

#1 KIPR Link Controller

#1 KIPR Link Power Adapter
#1 KIPR Link Mini USB Cable
#1 Botball Screwdriver

#1 11/32 Wrench

#1 1/4 Wrench

#1 Introductory LEGO bag
#2 Motors - SG-5010 Motor
#2 SG-5010 Servos

#1 Bag of Screws & Stand-offs
#1 Bag of Push Rivets

#1 Bag of Brass Screws

] KIPR Metal Parts to include:
#1 Metal Ball Caster
#2 Motor Brackets
#1 Chassis

#1 Angle Bracket

#2 Servo Round Horn
#1 Long Servo Horn
. Sensors to include:
#1 Light Sensor

#1 Small Touch

#1 Large Touch

#1 Long Lever Sensor
#1 ET Rangefinder
#2 Small IR

Online Resources-The Botball Store

www.botball.org

(\4/\" © www.botball.org

g‘-ﬂ‘caoq\e a)lB- 38

HD,WMU““ALL ¥ SEASON SCHEDULE v REGIONS AND TEAMS v REGISTERATEAM v VOLUNTEERv RESOURCESv CONTACT

KIPR/ TEAM
'I BOTBALL \‘ BOTBALL KISS HOME SPONSOR DONATE
COMMUNITY SOFTWARE BOTBALL NOW
\ STORE /} BASE
\\ V4
‘—’,
— = |
www.kipr.org
@ v Kipr.org w - C (8- Google Q) (B3] (8] [~
(3] Most Visited = | | Getting Started | | Botball Tournam... L, All items - Goog...
0R = -; ;‘
PRAGTIGA = -
RUBOTICS o
lhnovato ducatio
0 0 C 0BO D O (] O D -7 O O DO
ANDAPRS B4
a fo - ONA
Fra al RODbOo
d O Or-pro cU dllOrla
Orga datlo d e and O B
- A 1
obo progra order to S
0 ate the e eme .
5
@) edge, ana pra d
derstanding o ence A
- 010d clhd e (J, ald d

U4
botball®
4

/
/
!

I

I

|

\

\
\

\
\

\\ 4

SUPPORT

~
KPR
Price: $400.00

KIPR Link is 2 robot controller designed by the KISS Institute for Practical
Robotics. It is a powerful linux-based robot controller that uses the KISS
Platform programming environment.

learn more

Mnet naniilar nradiet

novators in STEM Education

HOME ABOUT PRODUCTS CONTACT SUPPORT

robot kits

robot controllers
metal parts
sensors

servos

motors

cables

sale items

| Page: 1 2 3 ...
ListView Grid View Per Page:

N
\

|

\

.

1
1
1
I
1 1x 10 Strapping Piece 119 Strapping Piece

Price: $2.00 Price: $2.00

event registration ',

’

a1

SIGNIN REGISTER

© 2009 KISS Institute for Practical
Robotics. All rights reserved.

Al proceeds benefit all KISS Institute
programs. KISS Institute for Practical

REGISTER

5 6 7 | Next»
9 15 30

AUTONOMOUS

Q

AERIAL ROBOT
2013 Fall KIPR AAV Contest
Registration
Price: §75.00

Resources- If you can’t get online

USB — micro USB
download cable

KIPR Link Controller
Motor

KIPR Link Wall Charger
(ONLY use this charger with your Link) Servo Motor

Resources- If you can’t get online continued

ET- Rangefinder sensor

Long Lever Sensor

USB Camera

Small IR Reflectance Sensor

Light Sensor

Resources- If you can’t get online continued

LEGO Bag KMP Motor Bracket 2

Introductory Kit Scavenger Hunt

e Sort and identify all of the robot kit components and use a checklist to make
sure you have everything

OR

e Generate your own checklist using your notebook and sort and identify all of
the robot kit components

THEN

e Use a Venn diagram to compare and contrast motors and servo motors

* Be the expert- each team member must describe and identify a kit component
explaining how they identified it until all items have been correctly identified

Motors Servo Motors

Building the DemoBot

Goals
e To get a robot built to complete the programming activities
* To learn to follow directions/schematics to construct the robot

Preparation

* Make sure if your robot is NOT already built to complete the Introductory Kit Overview
Activity

e Using the guide, have the student build the DemoBot

e The teacher can build the DemoBot ahead of time if desired

*HINT- The hardest part is starting the screws through the metal servo horn to attach the
tire. Students may need help starting the screws.

Activity
e Using the slides, build the DemoBot

KIPR DemoBot

/From the bag with two KIPR Metal Pieces (KMP) servo \
horns and two KMP servo arms remove the two round
horns and four machine screws
Using the screwdriver start the machine screws through
two opposite holes in the metal round servo horn
(It may be hard to get them started- teacher may need to

help)

< y

You will need two tires on rims

The KMP round servo horn with the two screws will go
onto the side of the rim that is recessed the least amount

=

yl

Using the nuts (from the bag with the KMP servo horns)

and a screwdriver, attach the KMP round servo horn to the

rrm

You will attach these to the motors later in the build

=

J 4t

/You will need two motors and the KMP Chassis

The kit has two (2) motors and two servos. You can

~

distinguish motors from servos by the wiring. Motors have

a double grey wire and servos have a triple red, orange,
Kbrown wire.

J it

Long Side Short Side

Servo Spindle

ﬁnsert the motors into the chassis

Make sure and place the white servo spindle towards
(closer to) the shorter side of the chassis

Repeat for the other side

=

~

N

Using two plastic pop rivets attach the motors to the
chassis and repeat the process on the other side with the
other motor.

For a more stable connection you can use the short bolts

and nuts instead of pop rivets. /

"

ﬁJsing the wheels you assembled earlier, push the round \

metal servo horn onto the servo spindle

Using the screwdriver, secure the wheel in place with a

Iong SCrew (found in the same bag with the KMP round and arm servo
horns)

\ Repeat for other side

/

-
Take one (1) 3-Hole LEGO piece.
This shows the position that it will be mounted in the next
Kfew slides.

/Get the “Pololu Ball Caster”.
The bag will contain a ball bearing caster, 2 short & 2 long
bolts with nuts and two plastic washers- one thick and one
thin. The washer in this slide is the THICK one and is shown
\here for position only (it will be attached in later slides).

\

- op

/Take the ball bearing caster and the 2 long bolts from the \
“Pololu Ball Caster” bag. Pop the ball out of the caster.
Leave the ball out for now. Put the bolts through the caster,
the thick washer and the 3 hole LEGO as shown. The
assembly is shown here for position only (it will be

Qttached in later slides).) il

/Place everything in place (3 Hole LEGO, Thick Washer, Ball h
Bearing Caster with 2 long bolts) into position. You will have
to hold this in place until it is secured in the next slide. You
can have a partner help or you can rest the caster assembly

\on the table so that it stays in place. . ol

‘. N
Take the thin washer from “Pololu Ball Caster” bag and

place over bolts.

-

/

Take nuts out of “Pololu Ball Caster” bag and secure caster

assembly to the chassis. Tighten with the screwdriver from
the other side.

\Pop the ball back into the caster.

/

ﬁption one- Set your \
KIPR Link onto the

chassis in the

orientation shown.

Power switch located
opposite from the ball
bearing caster. Leave
three holes uncovered

on the chassis on the
caster side.

ﬁl’here are two options for attaching your KIPR Link to the)
chassis. Option one attaches with push rivets and option
two (slides at the end of the presentation) allows you to
simply set your KIPR Link on the chassis so that you can N
\quickly change out the KIPR Link if you need to. WA 3

/CAREFU LLY turn the chassis/KIPR Link upside down. A

REMEMBER it is NOT attached and will fall. You can hold it
with your hand until we attach it in the next step or

\CAREFULLY set it upside down on the table.

o)

Y
O)

(Y
(Y

e

ﬁl’ake Four (4) plastic pop rivets, identical to the ones you
used to attach the motors to the chassis and attach the
KIPR Link to the chassis by lining up the holes (as shown)
and pushing them in until they lock. Once you have the
KIPR Link locked into place you can turn your robot over
Qnd let it rest on the wheels and caster.

~

/ 4l

“KIPR Metal Pieces Box”. You can identify it by the hole
spacings that look like a smiley face. It is shown here for
identification and will be attached soon.

/This is to show posmon onIy, it will be attached with bolts
and nuts in the next slide. NOTICE the alignment on the

IT WILL NOT be straight when properly aligned, but this is
\ okay.

chassis and the holes in the angle bracket that will be used.

~

Y op

el

ﬁlace two (2) short black bolts as shown. They are in a

ziplock bag with wrenches and offsets in the GREEN
paper insert labeled “Electronics Kit”. There are 3 lengths
of bolts (short, medium and long) and two types of nuts
(locking with white nylon and locking with attached lock
washer). You will need the locking with lock washer nuts in

@e next step. - o

Using the lock nuts attach the angle bracket to the chassis
and tighten using the wrench and screwdriver. This is shown
upside down for clarity. You do not have to turn your robot
upside down to attach the nuts.

\

) i

4 N
ldentify your KMP (KIPR Metal Part) Motor Bracket.

It is shown here for identification and will be attached in

the next slide.
\

4)

Attach the motor bracket to the chassis using the short
bolts and lock washer nuts. Tighten with the wrench and
screwdriver.

-

-

You will need one (1) servo.
You can distinguish servos from motors by the wiring.
Motors have a double grey wire and servos have a triple
red, orange, brown wire. You will also need one small
\round servo horn for the next step.

/

Pop Rivets

6Iace the round servo horn onto the servo just like you \
placed the servo horn onto the motor and secure with the
small silver servo horn screw. Tighten with the screwdriver.
You can attach the servo horn to the servo before

attaching the servo to the servo bracket with two (2)

plastic pop rivets. Secure the servo to the mount by

Qushing the pop rivets in until they snap into place. /

4 N\
You will need one (1) 11 hole LEGO piece

This will be attached to the servo horn in the next step it is

shown here for identification ONLY. PR
- /

LEGO should be vertical
(Not as depicted here)

ﬁEFORE attaching the LEGO to the servo horn, ROTATE the
servo horn clockwise (turn towards KIPR Link) until it
stops. Then ORIENT the LEGO piece so that it is pointing
straight up/VERTICAL(not shown in this picture).

You will need two (2) of the longer silver screws found in
the servo bags and using the screwdriver attach the 11
hole LEGO piece to the servo horn. MAKE SURE the LEGO

wece is vertical.

Attach the LEGO pieces
to the chassis as shown

OPTION 2

-~

Option 2 uses % friction pins and the Lego pieces.
Remember this just keeps the KIPR Link from sliding off the
chassis and allows easy change of the KIPR Link, BUT the

\KIPR Link will fall off if it is turned upside down. Y.

Get to know your controller

KIPR Link Basic Features

GNU/Linux based operating system
Open-source robot control software
Integrated color vision system
800MHz ARMv5te processor
Spartan-6 FPGA

Integrated battery and charge system
Internal speaker

320 x 240 color touch screen

Input and Output

1 - 3 axis 10-bit accelerometer (software selectable 2/4/8g)
8 — Digital 1/0 ports (hardware selectable 3.3V or 5V)

8 - 3.3V (5V tolerant) 10-bit analog input ports

You have the

KIPR LINK
4 - Servo motor ports
4 - PID motors ports with full 10-bit back EMF and PID motor control Manual on the
1-3.3V (5V tolerant) TTL serial port flash drive

2 - USB A host ports for connecting devices

1 - Micro USB port to connect to your computer
1 - Physical button

1- IR emitter

1- IR receiver

1 - HDMI port

provided to you

Charging the KIPR Link Controller

* For charging the KIPR Link, use only the power

supply which came with your Link
0 Damage to the Link from using the wrong charger is easily
detected and will void your warranty!

e The KIPR Link power pack is a lithium polymer
battery so the rules for charging a lithium battery for
any electronic device apply

O Only an adult should charge the unit
O You should NOT leave the unit unattended while charging

0 Charge away from any flammable materials and in a cool,
open area ‘

R

i

Learning about the Link Controller

Goals

 To be able to identify all of the ports on the link controller and what they are
used for

 To be able to identify the buttons and their use

e To understand the proper charging procedure (only an adult, only under
supervision at all times, not around water or flammable materials)

Preparation

Have a link controller available for students to examine along with a projection of
the resource slide with pictures of the controller OR give students a printed sheet
of the resource slide

1. Print the table in the resources for students to use to identify and then learn
the use of the items

2. Have the students use their science/engineering/robotics notebook to make
their own checklist/table to account for all ports and switches

Resources
The KIPR Link Manual (on your flash drive)

KEY

HDMI port speaker side button [a Motors —] L ;azslensor Graph J

l[ﬁ} PID Tuner | | .= sensor List J

| Servos ___| | = Camera |

@'C {: 3§VI|mgml
egulater
KIPR/LINK
CHARGER ONLY

-

TTL serial USB 2 USB Power

8 analog 8 digital

sensor ports sensor ports
2 servo

motor ports 2 servo

motor ports

power switch IR Sensor 2 motor ports
2 motor ports

KEY

1 HDMI Port J |Where you plug in SERVO motors

2 Speaker K |Where you plug in motors

3 Side Button M Where you plug in digital sensors

4 TTL Serial L |Where you plug in analog sensors

5 USB 2 N |Where you can interact with the controller

6 USB H |Used to turn the Link on and off

7 Power B |Used to play sounds

8 Power Switch I |Used to emit and receive Infrared

9 IR Sensor E |Used to download programs from the computer to the link
10, 15 Servo Ports D |Used to connect to the iRobot Create Platform
11,14 Motor Ports A |Used to connect to a display

12 Analog Sensor Ports G |Used to charge the Link FOLLOW PROPER PROCEDURES

13 Digital Sensor Ports C |Used for human input (used in porgramming)

16 Color Touch Screen F |Used for flash drives, keyboards, mouse

_ Home

|I
#1 #2 #3 lsﬁ Motors _] L . Sensor Graph J |

#16 . _
| | & PID Tuner | |. .= sensor List J
| ¢
;F | Servos _-_“:| | 4 camera]
| ’ 5)
|
[
EHARGER ONLY [alh 76.2% X

#4 #5 #H6 #H7

#12 #13
#10

#8 #9 #11 414

Get to know your KIPR Link

ltem # goes Letter in
here front of Item
|

A |HDMI Port Where you plug in SERVO motors
B |Speaker Where you plug in motors
C [Side Button Where you plug in digital sensors
D (TTL Serial Where you plug in analog sensors
E |USB2 Where you can interact with the controller
F |USB Used to turn the Link on and off
G |Power Used to play sounds
H [Power Switch Used to emit and receive Infrared
I |IR Sensor Used to download programs from the computer to the link
J |Servo Ports Used to connect to the iRobot Create Platform
K |Motor Ports Used to connect to a display
L |Analog Sensor Ports Used to charge the Link FOLLOW PROPER PROCEDURES
M |Digital Sensor Ports Used for human input (used in porgramming)
N |Color Touch Screen Used for flash drives, keyboards, mouse

Know your Robot Controller

* Using a Link controller OR the print out OR a
Link controller projected on the screen use the
table provided by your teacher to identify the
items by number

e Now match the items with their proper use
(use the letter in front of the item)

Goals Be the Robot Activity

e To help students understand the importance of specific directions
e To facilitate the student’s understanding of pre-thinking the logic of
providing directions to the “robot”
Preparation
Set up the room so that a blindfolded “robot” student can move around with out getting
hurt.
1. Arrange the room so that there are some open areas and a few obstacles.
Activity
Explain the task to be completed by the blindfolded human robot (must start here go
around the desk and stop at the white board, etc.).
* Make sure they must go around some obstacles, make a few turns and end at a
specific location, maybe back to where they started
* Blindfold the student robot or simply have the student close their eyes. Put them in
the “starting box” and have the other students provide directions to complete the task
0 One student at a time should give only 1 direction at a time. For example; move
forward 3 steps, stop, turn right, stop
 Document the instructions the students provide to the “student robot”
0 Use the documented instructions to write out the steps
0 Using documented steps, they can analyze it for success one step at a time. This is
a great whole group activity
e Complete the Flow Chart activity, which introduces the concept of flow
charts instead of written steps

Be the Robot Activity

Your teacher will explain the task that your human “robot” must complete.
Select a volunteer student to be the human “robot”.

Select students who will call out instructions to the robot.
 Only one student at a time can provide directions, make sure to take turns in
the proper order
 Only one direction at a time may be provided to the “robot”

Run the “robot” by providing the directions and see how successful you were at
controlling the robot.

e Discuss was it easy or hard to make the robot complete the task

e Could you do this with less instructions?

After brainstorming ideas to make the instructions better, write the steps out one
at a time and in the proper order on the whiteboard, chalkboard or in your
notebook.

Select another “robot” volunteer and read the written directions one at a time to
see if they work any better.

Analyze for improvements in the written instructions and repeat.

Discuss what made for better instructions.

Move on to the next activity, Flowcharts!

Goals

Be the Robot Flowchart Activity

To help students understand how to construct a flowchart

To introduce students to the concept of decision making “logic”
To facilitate the student’s understanding of using flowcharts to pre-think and plan the
logic of how they program their robot

To ensure that students can read a flowchart and equate it to actual robot behavior
To ensure that students can look at robot behavior and equate it to a flow chart

Use a flow chart to spot errors in logic (it didn’t work, where is the problem?)

Preparation
1. Print the flowchart symbol (resource slide).
2. Cut out the flowchart symbols ahead of time (one set per group or one for the whole

class) or print the sheet and have the students cut them out.
e A magnet on the back makes them great to use on a whiteboard
* You can make some oversized symbols if you plan this as a whole group activity

Activity
1. Have the students complete the following flowchart activity.
2. Using the cutouts make a flowchart and have the students draw out what they think

the robot will do (pretend the robot leaves a mark on the floor/board with a marker
as it moves around).

Using a reference robot path (one is provided in resources), print the sheet
for each group or draw it on the board and have the students work
backwards creating a flowchart from the actual path.

MAKE A
DECISION
YES or NO

DO SOMETHING

DO SOMETHING

DO SOMETHING

J

DO SOMETHING]

MAKE A
DECISION
YES or NO

YES

YES

Create a Flow Chart from the robot’s path 1 foot

i |

1 foot T
>ud
5 feet 3 feet

© L.,

2 feet

A

2 feet 2 feet

L « 8 feet J

Create a Flow Chart from the robot’s path (decisions)

S
<«
|

| want the robot to
start, move forward and
stop before it hits the

P rOg ramm i ng (telling your robot what to do)

2. Draw a DIAGRAM that shows the steps.

P rog ramm i ng (telling your robot what to do)

Computer Scientists & Engineers use

a diagram of their program called
a FLOWCHART.

P rog ramm i ng (telling your robot what to do)

Notice how they use different SHAPES and
COLORS.

P rOg ramm i ng (telling your robot what to do)

So that everyone will understand each
other’s flow charts everyone uses the
same shape and color for certain

actions.

P rog ramm i ng (telling your robot what to do)

DO SOMETHING

The start and the stop
are easy to understand:
these are where the
instructions “program”
starts and stops

What the robot is
programmed to do

MAKE A
DECISION
(YES or NO)

Yellow diamonds are always a
choice or decision (you must have
at least two choices after a yellow
diamond)

P rog ramm i ng (telling your robot what to do)

— 2\

—

—>
é—
v

The arrows show the
direction or flow of
the instructions
“program”.

That’s why it is called
a flowchart!

K|S
NS
PRA
RUB

Now, cut out your shapes and sort them

MAKE A
DECISION
YES or NO

Is There a Wall?
YES or NO

Move Forward 3

feet

YES || YES

DO SOMETHING

feet

G J

\ y
a N
Move Backward 3

[DO SOMETHING]

P rOg ramm i ng (telling your robot what to do)

3. Use your cut outs to make a flow
chart of a program that: ’%
1. Has your robot START. @
2. Has your robot move forward 3

feet. L
3. Has your robot STOP. @

P rog ramm i ng (telling your robot what to do)

Did you remember the arrows?
A -
= Vv

P rog ramm i ng (telling your robot what to do)

Starts the program
“instructions”...

@ ..then it...

Move Forward 3
feet

By
&=

...moves forward 3 feet...

...thenit...

...stops the program
“instructions”...

P rOg ramm i ng (telling your robot what to do)

5. Now make a flowchart of a

program that:
1. Has your robot START. @
2. Has your robot move forward 3

feet. |]

3. Has your robot move backward 3

feet. bl
4. Has your robot STOP. @

P rog ramm i ng (telling your robot what to do)

Move Forward 3
feet

~

Move Backward 3
feet

"
@

P rog ramm i ng (telling your robot what to do)

4. Time to make a decision.

MAKE A
DECISION

P rog ramm i ng (telling your robot what to do)
The decision will change what the

robot does.

Is there a wall
right in front of
you?

Now | know

what to do?

[MOVE FORWARD 3 feet]

7\ ©

Is there a wall
right in front of

\

_________________ \, Notice the 2
choices or options

Notice that a choice MUST be made

P rOg ramm i ng (telling your robot what to do)

6. Now make a flow chart of a program that:

1.
2.

Has your robot START. @
Has your robot move forward

3 feet. L

Has your robot detect a wall and
make a decision. (YES or NO))
Has two choices for your robot. o
Has your robot STOP. @ ﬁ[ﬁ’\

{ MOVE FORWARD 3 feet]

Is there a wall
right in front of

AN

P rog ramm i ng (telling your robot what to do)

7. Now make a flowchart of a
program of your own choice.

Include at least one decision.

DRAW WHAT YOU THINK THE FLOW
CHART WILL MAKE THE ROBOT DO

1. Inyour notebook or on the board draw the path you think
your robot will follow from the following flow chart.

MOVE FORWARD 3
inches

l Turn Right l

~

MOVE FORWARD 3 MOVE FORWARD 3
inches inches

®

A4 1>

Turn Right MOVE FORWARD 3 .
g e Turn Right

Did you get a square?

Explain what the robot is doing

Wait for
light

Turn 45 Degrees

Drive Forward
100cm

]

Turn 60 degrees

I

Drive Forward for
5 seconds

.

v

Drive forward to
the pvc

l

Touch
Sensor
Pressed?

Drive
Forward

NOT

Raise Arm 20 cm

{

Turn to sweep
objects into
basket

Back up 10 cm
and dump basket

R

Flowcharts are great for humans, but

Turn 45 Degrees

-~
v
Wait for Drive forward to
light the pvc
Drive
l Forward

Touch
Sensor
Pressed?

No |

Drive Forward .
100cm Raise Arm 20 cm
Turn to sweep
Turn 60 degrees objects into
l basket M| = ———mmm S S S S S S S S S S
Drive Forward for

Back up 10 cm

5 seconds and dump basket

|

|

|

E Computers don’t understand or

E speak this type of language so we
I need to write (program) the
i
|
|
|
|
i

instructions in a language that
computers can use

Introduction to Programming Languages

Goals

e To help students understand the terms; IDE, compiler, source code and programming

language

Preparation

e Prepare word/term cards (index cards, etc.) for a word wall (sample in resource slide)
or have the students write the terms in their notebooks

O O O O O

o

Activity

Machine Language (what the computers understand- Bytes)

Executes (in terms of a computer running or executing the instructions)

Source Code (name for code written in programming language)

Compiled (translated from a programming language to a machine language)
Programming Language (Language humans understand that can be turned into
machine language)

C, C++, Java, Python (names of programming languages)

e After reviewing and discussing the slides have the students generate and agree on the
definitions/uses of the term

0)
0)
0]

Word Wall
Write in their notebooks
With a partner match up the word card with the correct definition card

The language (bytes)

Machine Programming
L] that computers
anguage anguage understand
A computer
Executes C, C++, Java, Python | a program when it

runs the program

Source Code

Translated from a
programming
language to a

machine language

Language humans can
understand that can
be turned into
machine language

Compiled

Name for code
written in a
programming
language

Strange names of

some of the often

used programming
languages

Programming Languages

Bla, Bla,

Computers only understand machine language (stream of bytes),
which they can then read and execute (run).

Humans on the other hand, don’t do well with machine
language.

Why not use an interpreter?

&= o'~ Programming | Eﬁmi”ﬁi) Machine
— 7=~ ~ Language Language
- E—) Translates e

U/

Humans have created languages with funny names like; C, C++,
JAVA, Python, that allow them to write “source code” which they

can understand and edit.

This source code is then compiled (translated) into machine
language that the computer can understand and execute (run).

I\

Programming Vocabulary Activity

e Using the cards you cut out or your teacher
provided for you match up the terms with
their definition

Introduction to Programming Languages

Goals
* To help students understand that languages have rules/conventions you must follow
0 Sentences start with a capital and end with a punctuation mark, etc.

e Understand how programs such as Microsoft Word or other applications help you
follow the rules/conventions of a program

e Understand that the KISS IDE (Integrated Development Environment) is like a word
processing program that helps them follow the rules/conventions while they write
their source code

e New Vocabulary word is Debug, meaning checking your program for errors and fixing
them much like when Microsoft Word underlines misspelled words or grammatical
errors

Activity
e Have students list things the computer program/application Microsoft Word helps
them with when they are writing.
0 In their notebooks
0 Whole class activity on the board

Rules you use when writing

e List as many rules as you can think of you
must follow when writing a report in school

0 Once you have everything listed go to the next
slide and add anything you didn’t have on your list

Rules/Conventions when writing

These are things that are always done in a language.

For example:

When writing a sentence you always start with a capital letter
Complete sentences should end with a period.

Spaces are used to create paragraphs, which are used to
separate out ideas

The order of words make a difference
O The ran horse slowly as compared to the horse ran slowly

Math has conventions as well
0 Order of operations (1+2) X 4

Programming Languages

Computer languages are like any other language: they take a
little time and effort to learn all of the rules/conventions.

The more you practice the better you will get!

How does the Microsoft Word program help? Activity

Have you ever used a word processing program such as
Microsoft Word?

What does it help you do when you are typing something like a
report?

e List all of the things the program helps you with

Word Processing programs highlight
possible errors

Ll
P ~
s N,
-

- - —
~ - -~
~ - ~
’ M

’

-
-

-
- T

Integrated Development Environments
(IDE) help you with the rules/conventions
of programming languages

These are software applications (Apps) that make it easy for you
to write and edit your source code, debug it (look for mistakes)
and compile (translate) it.

This is kind of like a word processing program that lets you write
text, format it, spell check, etc.

KISS IDE

To make it easier for you to learn and use the programming
language we have the KISS IDE, which will allow you to develop
source code with the C programming language

M Weltame™
Welcome to the KISS IDE

Bothall Community

Introduction to a simple C program

Goals
* To help students understand the basic components of a C program
0 Main program, function, return, curly braces, terminating statements (;) and
comments
* To help students understand what a function is
Preparation
* Students need to be able to see a program
1. Project the “Hello World” onto a white board or screen so the whole class
can see it.
2. Print out the C program “Hello World” so that each group/student has one
(resource on following slide).
3. You can have them open the KISS IDE and select the “Hello World” template
on their computer (instructions on starting KISS IDE in resources).
4. Print out or project a more complicated program and have students find the
main function, curly braces, semicolons and the return.
* You can use vocabulary cards for the new vocabulary words
Activity
Using either the print out, projection or actual KISS IDE on a computer
* Run through the program slides and have students identify the different parts of
the program (they can circle them on a print out, point to them, etc.)
on the simple “Hello World” and the more complicated program as well
e Students can draw a flow chart for each program

Launch the KISS IDE

E KISS IDE icon

e Start the KISS IDE by clicking on its icon to get
the welcome screen

* C(Click on the New File icon and

and choose}(ve C, Hello, World! template
\-" 0 ok Templates

WEIcome to KI Pl%electatempiate:

v = iles Please select a template or template
Header File pack to the left. A description of that

Hello. Werld! item will appear here.
¢ Hello, World!

¥ || C++ Files
0+ Hello, World!

MNew File

Remove Template Pack | Cancel | [L|

Select Target

e A Target Selection window will appear

* Pick “No Target” and the C program template will come up

&4 Target Selection

Select the farget you wish to communicate with:

1 3
T 1y |
Nﬂ Tafget]fdev ftw.uﬁ:bmﬂde. o | i KIPR's Instructional Software System - No Tar et
i File Edit | Source Target Developer Help

:“ | File ! Project | | Open | || Copy lCut G‘_‘:Pastr |l$Cormﬂe W Download = Run

StartPage *Untited | w

// Created on Thu January 10 Z013

i

i

|

i int main()

| {

i printf("Hello, World!\n");
i return 0;
|

i

i

i

|

i

i

i

}

Show targets communicating over: ' | All Interfaces =

|'_MAE|'T'| |-_RE’E;1;_.I || Show Additional Information |_ Cancel | | OK |

The C Template: Hello, World!

i KIPR's Instructional Software System - No Target
File Edit | Source Target Developer Help

|| | |File " iproject Open || Copy o Cut [["|Paste | {} Comple W Download > Run

Start Page * Untitled

e
e
(1
(i
1]
fu
it
in
Lds
()
B
|
2
o
e
[
i
o)
g_l
-
Lr.rl
sk
i
i]
[
[
Lad

int main()

{
printf("Hello, World!\n"):;
return O;

R

int main(Q)

printf("Hello, World!\n"); //print Hello World
return 0;

int main()

printf("Hello, World!\n"); //print Hello World
return 0;

int main(Q)

printf("Hello, World!\n"); //print Hello World
return 0O;

—-—
— o -

- -
]

{
‘(Yoe
dosyy
¢ vod Boeue u) anea peayy (52 c={+)01 bojeur Bg o p=<(;)0| Boeuely
{
Hose+(/)01 Bojeur'cuojow
((oce+(2)01 Bojeue noiow
plesIO) aaowy}
J vod Bojeue uy anea peaiys v2{: o1 Boeus) g

{
H(ogz+(2)o 1 Boeus), |- 'Eloow
H(osz2+(2)0 1 Boeus), - nliolow
SPUEMNIEQ Sa0wy}
/ uod Bojeue u) snjea peay{czce<e(; JoLBoeur)y
}
uonng apis jo smes sydsaudio==0uonng apis)ajium

Bojeur Bupeoy o1 7 wod abBueya iy {o* s Ydnnd” BoeurTes
}
Qurew

Computers read a program just like you read a
book, they start at the top and go to the

bottom. Computers read incredibly fast- 800
MILLION lines per second!

int main()
e ma .4

return 0; Return O

<>

}

v

Programming Languages have Rules/Conventions as well,
let’s look at a simple C (programming language) program

This is the main function and

where a program starts
/ executing. ALL C programs

must have a main() function.
A function specifies what is

to be done. It is like a title to
a book of instructions.

return 0: Return O

} <>

= = - -
=

-— - -

wwls

Functions

Function- a function in a program specifies what is to
be done. It is like a title to a book of instructions.

A clean_house() function could mean
vacuum, dust, mop, change the linens, wash the
windows etc... all the commands specified in the

function are executed.

Looking at a program

returntype name argument list

e &
int main()
{

}

Programs should always return something. In this case the int
stands for integer (whole number)

The name is descriptive so you can easily see what it is.

In between the argument list you can specify details.
— In this case it is not specifying anything to be returned.

return 0;

Looking at a program

et 1nt main()

Return O

. @retur‘n 0;
op —> i

The curly braces organize everything you want the program to do
(execute) when the computer comes to the last curly brace it will
end the main program.

Looking at a program

int main() .
{

Return O

printf("Hello, World!\n");
return 0;

a

/

This is the code and specifies the things (functions) you want the

program to execute.

Looking at a program

1nt main())
{

a

Return O

pr"iI i "Hello, World!\n");
]

Notice the program returns a value even though it is O.

Looking at a program

int main() .

{
printf("Hello, Wor"ld!\n"@ e
return Return O

¥

When the program is executing the semicolon terminates the
code and says go to the next line. Without it, the code will not
compile (be translated so the computer can understand it).

The KISS IDE highlights parts of a program to make it

easier to read
. By default, the KISS IDE colors your code and adds line numbers

i KIPR's Instructional Software System - No Target

File Editl Source Target Developer Help

Comments appear in | /e poect open | copy o Cut [Paste | @ Comple @ Dounios
green Sﬁrtpagjf Zinehficlh on Thu January 10 2

Key words appear in snt waing)

bold blue { printf("Hello, World!\n");

Text strings appear o

in red

Numbers appear in int mainQ)

aqua i

printf("Hello, World!\n");
return 0O;

Functions

Goals

e To help students understand functions and how to access the KISS IDE Function Library
e To reinforce the learning of basic functions they will use when programming their
robots

0 Function has descriptive_name (argument); (terminating statement)
Preparation
e Print cards (found in resource slide) that students can have with them when they start
programming their robots
e Have the KISS IDE open and running on a master computer everyone can see OR better
yet open on each of the student’s computers
Activity
e Have the student open the KISS IDE (instruction in resource slides)
0 Access the KISS IDE User Manual
0 Scroll through the function libraries (The libraries also contain functions for the
iRobot Create Platform in addition to the DemoBot platform these exercises use)

0 Have students cut out the function cards they will use when programming their
robots

Background Information

Why use C?

Cis a high level programming language developed to support the
Unix operating system

0 The KIPR Link controller utilizes a version of Unix called Linux
Cis the most widely used language for systems programming

Botball robots need to be programmed at the systems level to use
the features of the KIPR Link

For the Link controller, the KISS IDE (Integrated Development
Environment) provides a user friendly interface to develop
programs in C, C++, Java and Python

These activities focus on C

Launch the KISS IDE

KISS IDE icon

e Start the KISS IDE by clicking on its icon to get
the welcome screen

e C(Click on the “New File” icon and

and choose](ve C, “Hello, World!” template
\-" 0 ok Templates

WEIcome to KI Pl%electatempiate:

o

v = iles Please select a template or template
Header File pack to the left. A description of that
item will appear here.
& Hello, World!

¥ || C++ Files
0+ Hello, World!

Remove Template Pack | Cancel | [L|

Select Target

e A Target Selection window will appear

* Pick “No Target” and the C program template will come up

Select the farget you wish to communicate with:

1 3
T 1y |
Nﬂ Tafget]fdev ,er'f.ufrmedE. o | i KIPR's Instructional Software System - No Tar et
i File Edit | Source Target Developer Help

:“ | File ! Project | | Open | || Copy lCut G_'-Pastr |IS§Compﬂe W Download = Run

StartPage *Untited | w

// Created on Thu January 10 Z013

i

i

|

i int main()

| {

i printf("Hello, World!\n");
i return 0;
|

i

i

i

|

i

i

i

}

Show targets communicating over: ' | All Interfaces =

|._I;"I-AEIIT-| |-_R§E§ﬂ_.| || Show Additional Information | Cancel | i__rjk_'l

The C Template: Hello, World!

i KIPR's Instructional Software System - No Target
File E:itlﬂm.rrce Target Deweloper Help
|| | |File | Project | Open | | Copy o Cut []' Paste | ¥ Compile 9 Downlcad = Run

StartPage *Untitled |

// Created on Thu January 10 2013

int main()

{
printf{"Hello, World!\n"):;
return C;

R

motor ();
ao ();

digital ();

analog 10 () ;

mrp (

wait_for_light () ;
shut_down-in (

msleep ();
enable_servos () ;
set_servo_position (
disable _servos ();

Turns motor on at % power specified
All off, turns all motor ports off
Refers to a specific digital port #
Refers to a specific analog port #
Move to relative position (# ticks)
Robot waits for light in specified port 3 before starting
Shuts down all motors at specified time

Program waits specified number of milliseconds

Turns servo ports on

Moves servo in specified port to a set position

Turns all servo ports off

motor ();
ao ();

digital () ;

analog 10 () ;

mrp (

wait_for_light () ;
shut_down-in (

msleep () ;
enable_servos () ;
set_servo_position (
disable_servos ();

Turns motor on at % power specified
All off, turns all motor ports off
Refers to a specific digital port #
Refers to a specific analog port #
Move to relative position (# ticks)
Robot waits for light in specified port 3 before starting
Shuts down all motors at specified time

Program waits specified number of milliseconds

Turns servo ports on

Moves servo in specified port to a position
Turns all servo ports off

Functions

A function is like a title to an instruction book. When you call the
function it does all of the commands in the book.

A clean_house() function could mean vacuum, dust,
mop, change the linens, wash the windows, etc... all the
commands specified in the function are executed.

The KISS IDE contains a large library of functions you can use to
program your robots.

| wonder if
that

controls

motors?

Function Examples

Name
\ Arguments Terminating Statement

\}‘ \\‘ ’,,’ O
e motor(0,100);.~ o

O Turns on motor in port 0 at 100% power

o digital(8);

O Returns the values from the sensor plugged into the #8
digital port. It will be a number, either 1 or0 (1 =
yves/true and 0 = no/false).

e analogl0(3);

O Returns the value of the analog sensor plugged into
analog port #3 (analog values are between 0 and 1024).

N

3

Where Can | Get Help?

The KISS IDE has an extensive User Manual including a brief
C tutorial
e The User Manual is found under the Help menu

e When using C for Botball, the User Manual is the primary
document to consult

e The User Manual covers the library of functions for accessing
the features of the Link controller and for controlling a Create
module

The Sensors and Motors Manual provides additional
information about the sensors and motors used with the
KIPR Link

e Accessed from the Team Home Base or on teacher’s flash drive

N

NSTITUTE™
#ﬁ CAL
R CS

Getting Help

With the KISS IDE open simply select the help tab then
documentation

-

- ~

, N
® KISS File Edit Target Help
e 00 \~~____,¢;’\ KIPR's Instructional Software System - No Target
Mew File | | Open [Copy .—_;;,' Cuk ' Dgste |ﬁ Compile W Cownload = Run

\Start Page = Keep your distance.c

N Created on Sun September 29 2013

imt main(}

{
printf{"Hello, Waorldhn™);

return ;

}

® KISS File Edit Target Wil
100

| New File | Open 2

et D

| il‘ Documentation \\ |
"} Start Page | Keep":,;aﬁFargu#@Tﬂ—fnﬁtmé&m

Y

- -

== KIPR Link C Standard Library

R

Select KIPR Link C Standard Library

® Finder File Edit View Go Window Help

KIPR's Instructional Software Systemr
MNew File Open
//"‘— | EIEI&.FH'QQN Keep your distance.c ~ * Untitled m
l,” = = ‘\\\
/== KIPR Link C Standard Library
I o 1
\ — The KIPR Link C standard library ,1'
\\\ ,/
\\\ ’¢,

-
- -
= -
-y -
i ————— —

KISS IDE User Manual

Select KIPR Link Library

;I -

Programmers KISS User Manual for C
Manual Index

O Introduction -
O KISS-C Interface IntrOdu(:tlon
O A Quick C Tutorial
Data Objects KIPE's Instructional Software System (KISS for short) 1s an integrated development environment providing an editor, compilers for multiple
Statements and Expressions programming languages, and a set of libraries and simulator for the LINK Beotball Controller. KISS implements the full ANSI C specification. For
O Assignment Operators and Expressions information about the C programing language. including history and basic syntax. see the Wikipedia article C (programming language). For a more
O Increment and Decrement Operators complete tutorial and guide for C Programming visit CPrograming. The Botball community website also has several articles about programming and a
O Data Access Operators user forum where questions can be posted to the botball community. For specific information on Motors and Sensors. see the Sensors and Motors Manual
O Precedence and Order of Evaluation
O Control Flow The primary purpose of this manual 1s to describe the KIPR Link Botball Controller libraries and simulator, which are extensions to the C programming
Statements and Blocks language. This file also provides a basic introduction to programming in C. To learn more about programming in C. consult one of the many books or
Disgla\-‘ Screen Printing websites that provide C references and tutonals.

o ® Preprocessor =

The KIPR Link Library)

~ -
il P

KISS Interface

Both new (unsaved) and saved files can be opened for editing in KISS. A row of tabs lists the files that have been opened. Clicking a file's tab activates it
for editing.

The File menu has standard entries for New, Open, Save, Save As, Print, Close and Exit.

To simulate the active file, simply click the Simulate button. The active file will also be saved, unless it 15 new, in which case the user is prompted for a
"save as" file name. The active file must contain or #include the main function, in order to be simulated.

+|| To download the active file. click on the Download button_ If the serial port connecting the KIPR. Link to your pc has not already been specified, a dialog .
¥ I 3 I

L4

KIPR LINK Library

ene KIPR Link Programmers Manual "

"\‘1) ©U file:// /Users /applesteve/Downloads /KISS Platform 4.0.5/KISS/KIS5.app/Contents/docs/KIPR Link C Stam e | 'El' Gaogle Q."' [ﬂ* |TI l?
—_— —=

KIPR Link Programmers Manual u =+ L

[i] Most Visited ~ :_: Getting Started | | Botball Tournam... . All items — Goog...

Programmers The KIPR Link Library File

Manual Library files provide standard C functions for interfacing with hardware on the robot controller board. These functions are
written either in C or as assembly language drivers. Library files provide functions to do things like control motors and

Index input sensors values.

KISS automatically has a selection of library files included every time it invokes the C compiler.

. O Introduction

. O KISS-C Interface

. O A Quick C Tutorial
. B Data Objects Commonly Used KIPR Link Library Functions
. [Statements and Expressions
. O Assignment Operators and

Expressions digital (<port#>);

7. O Increment and Decrement /* returns 0 if the switch attached to the port is open and
QIM returns 1 if the switch is closed. Digital ports are numbered

8. O Data Access Opcratcrs 8=15. Typically used for bumpers or limit switches. =/
9. 0O Precedence and Order of

Evaluation
10. O Control Flow
11. B Statements and Blocks
12. @ Display Screen Printing
13. [Preprocessor
14. [The KIPR Link Library

For convenience, a description of some of the more commonly used KIPR Link specific library functions follows.

[= QN N ST R

analog(<port#=);:
/* returns the analog value of the port (a value in the range 0-255).
Analog ports are numbered 0=7. Light sensors and range Sensors are

examples of sensors you would use 1n analeg ports. */

msleep(<int_msecs>);

/* waits specified number of milliseconds */

beep();

/* causes a beep sound */

printf(<string>, <arql>, <arq2>, ... }:

Hint

Until you are familiar with the functions that you will be using

while programming , use your “cheat sheet” for easy reference.
Copy and paste is also very helpful.

motor ();

ao ();

digital ();

analog 10 ();

mrp ();
wait_for_light ();
shut_down-in ();
msleep ();
enable_servos () ;
set_servo_position ();

Turns motor on at % power specified

All off, turns all motor ports off

Refers to a specific digital port #

Refers to a specific analog port #

Move to relative position (# ticks)

Robot waits for light in specified port 3 before starting
Shuts down all motors at specified time

Program waits specified number of milliseconds

Turns servo ports on

Moves servo in specified port to a set position

Writing Programs- Screen Display
Goals

e To help students understand how to use the KISS IDE to write a program

e To understand how to compile, download and run the program on their Link controller
e To understand how to use the print function to print things to the screen

e To understand how to use the msleep function to give commands time to execute

Preparation
Students will need computers with KISS IDE installed and access to a Link controller

Activity
e Have the student open the KISS IDE (instruction in resource slides)

* Follow the slides to write program to the screen display

First C Program

Programming Basics and Screen Output

Connect the Link to your computer

e Using the USB cable connect to the Link (micro usb port)

—

e Turn the Link on with the black switch on the side

OCD hqumea

KIPR LINK
CHARGER ONLY

Writing Your First Program

Launch the KISS IDE

do
e Start the KISS IDE by clicking on its icon to get ﬁ
the welcome screen e

. ’CIick on the “New Project” icon
e |You will have to name and save your project

sssss

Welcome to KISS IDE

NNNNNNNNN

Writing Your First Program

e Create a Robot Code folder on your desktop (you will use this
for all of your code)

* Name your new project
Use the Browse button to save the project
into your Robot Code folder on your desktop

Writing Your First Program

* You will be asked if you want to add a new file

ew Project e
—
|
i =
New Project

|

Open

You just created an empty project. Do yol
want to add a new file? ’

Botball Community

No | [Ves | i

\\\\\

Notice your project
“teacher” now appears on
the side bar

New Project

Writing Your First Program

u now need to select a template

Select under the C files folder, Hello, World!

HHHHHH

You will be prompted to
name and save the new

file(use something descriptive)

/ Writing Your First Program

he “Hello, World” template will now appear

To run the program, you must Compile it A Target Selection window
(The compile button sends the program to your .
will appear

target to be compiled)
Select the usb target (thisis your

robot)

Copy cu |
[@ Start Pag Teacher
1 /7 Created on Tue December 10 20:
main()
i
printf("H 5
rn @; P
1 lew Project Open : _“\Copy gy Cut [*Paste | @ Compile = Run
TN - Challenge 1.c | Teacher e
// Created on Tue December 10 2013
lllllll 9] ! 5
{ = = e
printf("Hells, Beloobins el yolrwisi fo commuloate Wil == e
return @;
1
g :q e / e 1
1
No Targst My Computer My Link Simulator A\!evmy.usbmmem!”‘,’
\ ’
‘‘‘‘‘‘‘‘
Show targets communicating over: | All Interfaces 2]
Manual... | | Refresh | [| Show Additional Information | Cancel | [OK |

Writing Your First Program
You will see the Compile Succeeded! message

e ~

~.. -

Activity 1 (Task Design)

Programming Basics and Screen Output

Break the objectives down into separate tasks and think about
how each might be accomplished; for example, the larger task
might be developing a program to operate a robot's claw, which
has tasks within for making the claw open or close.

Since this is our first example, the task is pretty simple:

1. Display the text "Hello World!" on the Link screen.

Pseudocode and Comments

Pseudocode- write out what you want the program to do
pseudocode (this means "false code") to help write the real code...
// 1. Display "Hello World!" on the screen.

Comment your code (pseudocode makes great comments) - your
comments show what you expect your program to cause your
robot to do, but that might not be what it will actually do!

Comments

Comments as psuedocode are helpful and they help you keep track
of what is going on in the program.

You can make a flow chart and then convert it to psuedocode.

The computer will not execute the comment, but you can see it.
There are 2 ways to comment C programs // and /* */

@is a comment for rest of line

or

@is a comment that goes from

e initial slash-star until
the first star-slash@

The Program Explained
(it illustrates most C syntax)

returntype name argument list

v &

int main() Comment
{ P

Function —> Printf("Hello, World!\n");
return 0;
¥

Syntax is important! Notice the quotation marks and
notice the \n at the end?

Blocks of Code

Comment

e

printf("Hello, World!\n");

Terminating Statements

1nt main()
{

printf("Hello, World!\n";
return 0

Compile your program

e Compile your program using the compile tab

| New Project

» |- Teacher

nt main()

printf("Hello, World!\n");
return 8;

. Lock Screen

m __ Programs J
L File Manager)
[4 Motors and Sensors J
[2 Settings J
98.5%

Running your program on the Link

e Select the program button that will take you to a list of
programs currently on the Link controller.

Running your program on the Link

e Highlight the program you want to run, in this case, “Hello
World”, and then push the “Run” button

i,

- -
-l —

Running your program on the Link

Wummmnummmumunummm
f i

- -
-l —

Activity 2
rogramming Basics and Screen Output

Write a program for the KIPR Link that displays "Hello World!” and
then displays your “name”, compile, download and run it on your Link.

Psuedocode (Task Analysis)

// 1. Display "Hello World!" on the screen.
printf (“Hello World\n”);

// 2. Display your name on the screen.
printf (“ Botguy\n”);

What did you notice when you ran the

program?
The controller reads the code and goes to the next line faster
than a blink of your eye.

At 800MHz the controller is executing ~800 Million lines of
code/second!

To control a robot you must give the function (command)
TIME to run on the robot.

msleep()

Like printf (), msleep() isa built-in (library) function.

ms1eep(3000) causesthe KIPR Link to pause for 3 seconds
(the m stands for milliseconds or 1/1000 of a second).

e Example:

printf('"slow');
msleep(3000);
printf("reader\n");

Activity 3

Programming Basics and Screen Output

Write a program for the KIPR Link that displays "Hello World!" to
the screen, delays two seconds, and then displays your name on
the screen.

Psuedocode (Task Analysis)
// 1. Display "Hello World!" on the screen.

// 2. Pause for 2 seconds.
// 3. Display your name on the screen.

Activity 3 Solution

Programming Basics and Screen Output

a¥a a¥a aVa a¥a a¥a a¥a Vs Vs aVa a¥a o Ve aVa aVa a¥a a¥a Vs aTa a¥a a¥a a¥a a¥a Vs aVa a¥a a¥a a¥a 0 s a¥a a¥a a¥a o Ve a¥a a¥a a¥a aTa Ve aTa a¥a a¥a 2 s aVa a¥a a¥a o Ve aVa a¥a o Ve a¥a a¥a a¥a aTa aTa aVa aVs aTa
4% 4% 4% 4% 4% 4% 4% 4% 4% 4 4% 4% 4% 4% 4 4> 4> o

a¥a aVa aVa aVa aVa aVa

4% 4% 4% 4 D > >

> 4%
aVa oV aVa aVa Ve = =
% Activity
ala Al Va a¥a a¥a aVa aVa aVa AV aVa aVa A% aVa aVa aTa A% AV aVa aVa A% Ve aVa aTa A% AV V4 aTa AT V4 V4 T4 A
S 4% 4% 4% 4% 4% 4% 4% 4% 4 4% 4 4>

int main(Q)
{
// 1. Display "Hello World!" on the screen
printf("Hello World!\n");

Print “Hello World”

Pause for 2 seconds

// 3. Display your name to the screen Print “your name”

printf("Botguy.\n"); i! !f
r‘etur.n 0 ; Return O

// 2. Delay for 2 seconds
ms1eep(2000) ; //2000ms = 2sec

Debugging

Goals
e To help students understand how to use the KISS IDE to debug a program

Preparation
Students will need computers with KISS IDE installed and access to a Link controller

Activity
e Have the student make intentional errors to learn how to debug their program

Run the Hello World program on
the Link again, but this time ...

You can download it again to your Link OR simply hit the “BACK” Button on the
touch screen and reselect the “Hello World” Program
* The Link will keep the program you run on it in its program files
e Make sure you name programs so you know which ones to select

Leave off the

. . terminating semicolon
Nt main () and see what happens

l Y

printf("Hello, World!\n");
return 0;

¥

\n doesn't show up on the printed output it simply tells the display to print
to a new line similar to the return key on a keyboard

Compile Failed “Debugging”

Example “Error Message”

e Compile Failed message at the bottom of the window
line #: col # (on or before)

| 4

Vi

|
/tmp/700101004954.. kovan-serial/iiello, Horld.c:Win ﬁ\ﬁctiun "main':
/tmo/700101004954. kovan-serial/Hello, Horld.c:6:2: error: expected ';' before 'teturn'

Al

800 KIPR's Instructional Softwara effem - /dav/tty.ushmodemfal3l

| NewFile | | Open E“',Cnpy i Cut m!’aste E@Cﬂm' Woownload = Run
art Page | Hello, Worldic |-

¥]

/I Greated on Thu August 8 2013

int main()

{
print{"Hello, World fn)

return (;

}

~

~
~

~
“expected a;’

/tmp/700101004954. kovan-serial/Hello, Horld.c: In function 'main': /
/tmp/700101004954. kovan-serial/Hello, Horld.c:6:2: error: expected ';' before 'return’

Compile Failed!

When there is an error, you can
ignore the first error line (“1n
‘main’”)and

function

-l —

)

Activity Extensions
Programming Basics and Screen Output
Try adding more printf() statements to your program

(pay close attention to the syntax, particularly the
terminating semi-colon needed by each statement)

Have the program print out a haiku about robotics
What does \n and \t do?

What happens if you leave off the quotation marks?
Try adding the command display_clear();

Can you print out more lines than can show on the
screen at one time?

What happens when the screen fills up?

n

Moving your robot with the motor() function

Goals
* To reinforce the concept of a function
e To use the motor function to move their robot

Preparation

* You will need the DemoBot built and ready to go
* You will need computers with the KISS IDE

* You will need the USB download cable

Activity

Follow the slides to make the robot move

Activity 3

Lets make a robot move!

Use the provided robot or build your robot using the Demo
Robot building guide.

Connect the Link to your computer

e Using the USB cable connect to the Link (micro usb port)

—

e Turn the Link on with the black switch on the side

OCD hqumea

KIPR LINK
CHARGER ONLY

Launch the KISS IDE

If already running just select new project

do
e Start the KISS IDE by clicking on its icon to get ﬁ
the welcome screen e

. ’CIick on the “New Project” icon
e |You will have to name and save your project

V= D 2 T 9%E Tuel2ll

sssss

@& KISS File Edit Target lHelp B w D 3 T <) 9%GE Tuel2:11
06 KIPR's Instructional Software System]

Welcome to KISS IDE

...............

N

Writing Your First Program

e Create a Robot Code folder on your desktop (you will use this
for all of your code)

e Name your new project “Making the Robot Move”
Use the Browse button to save the project
into your Robot Code folder on your desktop

Welcome to KISS IDE

Writing Your First Program

* You will be asked if you want to add a new file

ew Project e
—
|
i =
New Project

|

Open

You just created an empty project. Do yol
want to add a new file? ’

Botball Community

No | [Ves | i

\\\\\

Notice your project
“teacher” now appears on
the side bar

u now need to select a template

W KISS FHile Edit larget Help

LR

New Praject | Open &% Compile = Aun

806

A Templates

= luelZ2:13

/ & Teacher

Please selegt.a template:
-~ S

£ N
v (o CFlles)
g

-

¥ | C++Files
0+ Blank
I Header
G+ Hello, World!
¥ [Graphics Examples

C Camera
¢ Simple

¥ [iRobot Create Examples
> Crash

¢ Square

New Project

Remove Template Pack

A simple C program that prints "Hello,
World!" to the screen. This is the
recommended C template.

[Cancel | oK |

w

file(use “motor”)

® KISS hle Edit larget Help

Writing Your First Program

Select under the C files folder, Hello, World!

You will be prompted to
name and save the new

W% WY ¥R Y

|NowProjeet | Opon . @ Compie =

New Project

Aun

|Hello World

| Cancel | oK |

7 Teacher

The C Template: Hello, World!

i KIPR's Instructional Software System - No Target
File Edrtlﬂm.rce Target Developer Help
|| | IFle " iProject | Open || |Copy o Cut [{"Paste | % Comple WP Download = Run

StartPage *Untitled |

i
i
[
Lad

// Created on Thu January 10

int main{()

{
printf ("Hello, World!\an");
return 0O;

We will use this
template every

-l —

heck your Robot’s Motor Ports

 To program your robot, you need to know what
motor ports your motors are plugged into

* REMEMBER computer scientists start counting
at 0 so the motor portsare0, 1, 2 and 3

KIPR Link Motor Ports

Motor ports O (DemoBot), 1, 2, and 3 (DemoBot)

Plugging in Motors
Motors are the ones with two-prong plugs with 2 gray wires

The KIPR Link has 4 drive motor ports numbered 0 & 1 on the

left and 2 & 3 on the right

e When a port is powered it has a light that glows green for one
direction and red for the other

e Plug orientation order determines motor direction, but by

convention, green is forward and red reverse

motor port 3 -

Drive motors
| have a2 prong
—— plug

motor port 2

Plugged in motors
Motor Ports 0 and 3

Motor Direction
Motors have grey wires with 2 prongs on the plug

O There is no left or right or colored wire
O You can plug these in two different ways

 Motors rotate in the direction that the electricity
(electrons) move through them. One direction is
clockwise and the other direction is counterclockwise

*You want your motors going in the same direction,
otherwise your robot will go in circles!

j Motor Port & Direction Check
There is an easy way to check this!

0 Manually rotate the tire and you will see a LED light up by the
motor port (port # is labeled on the board)

e |f the LED is green it is going forward
* If the LED is red it is going backwards

e Using the manual tire rotation trick, check the direction and port #'s
of your motors
O If one is red and the other green turn one motor plug 180° and
plug it back in
0 The lights should both be green if the robot is moving
forward ‘*

Functions to Use

There are several functions for motors, we will begin with motor()

Computer scientists start
counting at 0 NOT 1

motor (0, 100);

Turns on motor port 0 aﬂ; 100% power. You can select any power
level up to 100% \

ms-l eep cxxxx) . \ IA positive number should

. ' drive the motors forward. If

\
\ . not, switch the motor plug
//Pause ‘1800

N
|
a0 () ; I A negative number will drive

: the robot in reverse. If the
//A-I -I O-F-F . motors are set up opposite
| one another the robot will go
Lm a circle.

L ——

Explain using comments

You can use a flow chart and then translate that
Into comments.

Using //comments as pseudocode is a great way
to start.

If you forget which functions to use, look at your
cheat sheet.

Lets make a robot move!

Write a program for your robot to move forward
for 2 seconds and then stop.

e Use motor ports 0 and 3
O Check the LEDs to make sure you are in the
right ports and going in the right direction

Drive Forward 2 se

Psuedocode (Task Analysis)
// 1. Drive forward (

Turn Motors off]

// 2. Pause program for 2 seconds to give
the motors time to move

// 3. Turn everything off

/ Lets make a robot move!
ow that you have written your program, you must Compile it

(The compile button sends the program to your . .
A Target Selection window

target to be compiled) will appear

Select the usb target (thisis your
robot)

Mew Project Open : [“|Copy gy Cut [["|Paste | (@ Compile = Run

| @ Start Page Teacher
// Created on Tue December 10 2013
int main() J& Target Selection
printf("Hells, Beloobins el yolrwisi fo commuloate Wil == e
return @;
1
g :q e / e !
No Targst My Computer My Link Simulator A\!evmy.usbmmem!”‘,’
’
‘‘‘‘‘‘‘‘
Show targets communicating over: | All Interfaces 2]
| Manual.. || Refresh | [_|Show Additional Information | Cancel | [OK |
U N i
AYa
{UBU
]

. Lock Screen

m __ Programs J
L File Manager)
[4 Motors and Sensors J
[2 Settings J
98.5%

Running your program on the Link

e Select the program button that will take you to a list of
programs currently on the Link controller.

Running your program on the Link

e Highlight the program you want to run, in this case, “Hello
World”, and then push the “Run” button

i,

- -
-l —

Activity 3
Solution

ar,
"5
ar,
"5
ar,
"5
ar,
"5
ar,
"
ar
"
ar,
”w
ar,
”w
Al
”
ar,
"5
ar,
"5
ar,
"5
ar,
A\
ar,
A\
ar,
A\
ar,
A\
av,
"5
ar,
"5
ar,
"5
ar,
"5
ar,
"5
ar,
'
ar,
”w
Al
”w
Al
”
Al
”
Al
"5
Al
"5
ar,
A\
ar,
A\
ar,
A\
ar,
A\
ar,
A\
ar,
"5
ar,
"5
ar,
"5
ar,
"5
ar,
"5
ar,
"5
ar,
"5
ar,
”
ar,
ar,

Ya a¥a a¥a a%a aVa a¥a a¥a oV aVa aVa a¥a a¥a aTa Vs aVa aVa aVa aTa
ACATEE AR L A SR L SR L L A S A A L A A A I A S

main o m e m==—
O 1 Notice the motor functions

’I
// 1. Drive Forward ':_are commented

motor(0,80); //Motor 1in port 0 at 80%
motor(3,80); //Motor 1in port 3 at 80%

~
\\

// 2. G'ive\t.;i\me for the motors to move

ms1eep(2000) ; “~_ o
\ I Positive (+) numbers should move the

// 3. Turn ever'yth1r’rg off motors in a clockwise direction

ao(); \\ (forward). If not, Reverse the motor

return 0; 1 plug 180° where it plugs into the
controller. If your robot goes in a circle

one motor is either not moving (check

the plug) or they are moving in opposite

Ldirections.

R

Robot Driving Hints

Remember your # line, positive numbers go forward and negative
numbers go backwards.

Reverse Forward
e

L1
1 11
5-4-3-2-1012345

Driving Straight- it is not easy to drive a robot in a straight line.
e Motors are not exactly the same
 The tires may not be aligned well
e One tire has more resistance, etc.
You can adjust this by slowing down and speeding up the motors.

Making Turns
 Have one wheel go faster or slower than the other

 Have one wheel move while the other one is stopped (friction is
less of a factor when both wheels are moving)

 Have one wheel move forward while the other is moving
backwards

LET’S MOVE! Materials/Supplies

1. You need a surface to run the robot on

YOU CAN BUY VINYL SURFACES FOR THIS CURRICULUM

http://botballstore.org/product/elementary-botball-challenge-surfaces

Use the floor, desktop (watch for falling robots), a piece of white or light colored
foam or poster board or a vinyl or paper mat as a robot testing track

O You need an area marked as the starting line (a piece of black tape works
well or you can mark it with a black marker)

1. You need an object to navigate to
e (Can of soda, foam block, whiteboard eraser, etc. will work
2. A measuring device and a timer will be useful

Soda Can

Starting line (Tape/Marker) i

LET’S MOVE!

Activity/mini contests

Using the simple motor function motor() ; and msleep();
you can have the students work on fun challenges.

These activities can all be completed using hard coding (“dead
reckoning”) and simple motor control functions without the use
of any sensors. This is a good place to start and will teach the
students how hard it is to be consistent using dead reckoning.

e This is a good time to bring up controlling variables when
they set up their robot- is it the same every time? How
could you make it the same (using a jig or ruler to control
how they set it at the starting line)

Once they have the skills down of forward, backwards, stop, turn
then we can move on and start adding sensors and decision
making into the programs.

N

% [TUTE™
PRACTICAL
ROBOTICS

// Touch the Can

Robots must start on or behind the starting mark and move to the object
with the goal of touching the object in the shortest amount of time

Extensions
e Move the can to various distances
e Make the object smaller and harder to navigate to

e Math- have them measure the distance to the object and time the
robot and then calculate rate/speed

O Speed = Distance/Time

Starting line Starting line
Soda Can Soda Can

. i

Closest to the Can

Robots must start on or behind the starting mark and move to the object
with the goal of stopping as close to the can as possible without touching it.

e If they touch the can they must start over at the starting line

e Use rulers to measure the distance stopped from the can- make a data
table

* You can use a sheet of paper passed between the robot and can to
determine if it is touching

* You can limit the number of attempts and take the best run or have them
average several runs or add the distances together for a grand total

2. Move the can to various distances and locations

Starting line Starting line
Soda Can Soda Can

. jacL

Closest to/touch the Can and

“Go Home”

A variation on touch the can and closest to the can.

After stopping closest/touching the can, back the robot up until
touching the starting line
 Move the can to various distances

Starting line

Soda Can
a

Starting line
. B SEElEL Starting line
Soda Can

Circle the Can and
“Go Home”

1. Brings in the concept of turning

If you touch the can you must start over

The quickest trip is the winner

Move the can to various distances

Make them go clockwise and then counter clockwise

Starting line

Circle the Can(s) and

“Go Home”

Variation on Circle the Can

1. Have them make a figure 8 around two objects
2. Barrel Race (have them go around three cans)

Starting line -~ Starting link !\

// Park in the Garage

1. Robots must start on or behind the starting mark and park in
the garage (box or tape outline on board)

e Start with the garage straight across from the starting line

O Garage can be roomy and then make it a tight fit
e If they touch the garage they must start over at the starting line
e Move the garage to various distances and locations

Starting line Starting line

Garage

park in the Garage and

Miss the Bicycle

“Park in the Garage” variation
O Place an object(s) between the starting line and garage

Starting line

Garage
i) Starting line
B I e

/ Walk the Line

Brings in the concept of driving in a straight line

* Robot must move without touching the line (easiest to hardest below)
O You can use one line and have the robot move down the side without touching it
e Make this a time trial-quickest time without touching (faster is harder to control)
0 You can make a lane and have the robot drive down it without touching either side.
* Increase difficulty by making the lane narrower

O You can use one line and have the robot straddle it with the goal of running the full
length without either wheel touching the line

Variations on Walk the Line

Same as before only have them stop and go backwards without touching the
line as well

e Add astarting line to begin and a finish line the robot must touch before
backing up

B

‘____

Variations on Walk the Line-
Jousting!

Robots on opposite sides of the line move towards each other and try to
knock object off of other robot

O Use whatever object is handy
Engineering Point-

Have the students engineer how they attach their lance (new unsharpened
pencils work well) to their robot

Race Track

Brings in the concept of controlled driving

Robot must move within the lane completing the course

Make this a time trial the fastest to complete the course with no errors

0 If you touch the line then you have to start over and the clock keeps running
* You can use a much larger track if desired (taped lanes on the classroom floor work well)
* You can use different lane setups

0 The tighter and more numerous the turns the more difficult it is

Extension- once finished, make them stop and back up all the way to the start

Moving your robot with the other functions

Goals
e To use the mav() and mrp() functions to move their robot

Preparation

* You will need the DemoBot built and ready to go

* You will need computers with the KISS IDE

* You will need the USB download cable

Activity

Follow the slides to make the robot move using mav() and mrp()

Let’s make a robot move usingmav () andmrp()

Use the provided robot or build your robot using the DemoBot
building guide.

Connect the Link to your computer

e Using the USB cable connect to the Link (micro usb port)

—

e Turn the Link on with the black switch on the side

OCD hqumea

KIPR LINK
CHARGER ONLY

Launch the KISS IDE

(if not already running) If running just select new project

do
e Start the KISS IDE by clicking on its icon to get ﬁ
the welcome screen e

. ’CIick on the “New Project” icon
e |You will have to name and save your project

V= D 2 T 9%E Tuel2ll

@& KISS File Edit Target lHelp B w D 3 T <) 9%GE Tuel2:11
) KIPR's Instructional Software System l

sssss

Welcome to KISS IDE

NNNNNNNNN

N

Writing Your Program

e Name your new project “Something Descriptive”

Use the Browse button to save the project
into your Robot Code folder on your desktop

Writing Your First Program

* You will be asked if you want to add a new file

ew Project e
—
|
i =
New Project

|

Open

You just created an empty project. Do yol
want to add a new file? ’

Botball Community

No | [Ves | i

\\\\\

Notice your project
“teacher” now appears on
the side bar

New Project

Writing Your First Program

u now need to select a template

Select under the C files folder, Hello, World!

HHHHHH

You will be prompted to
name and save the new

file(use “something descriptive”)

The C Template: Hello, World!

i KIPR's Instructional Software System - No Target
File Edit | Source Target Developer Help

| | |Fle (“iproject | Open | | Copy o Cut [["Paste | & Comple WP Download = Run

StartPage Untited |

// Created on Thu January 10 2013

int main ()

{
printf{"Hello, World!\n");
return O;

We will use this
template and

-l —

Check your Robot’s Motor Ports

 To program your robot, you need to know
what motor ports your motors are plugged
into

* REMEMBER computer scientists start counting
at 0 so the motor portsare 0, 1, 2 and 3

KIPR Link Motor Ports

Motor ports O (Demobot), 1, 2, and 3 (Demobot)

Plugging in Motors

Motors are the ones with two-prong plugs with 2 gray wires
The KIPR Link has 4 drive motor ports numbered 0 & 1 on the
left and 2 & 3 on the right

When a port is powered it has a light that glows green for one
direction and red for the other

Plug orientation order determines motor direction, but by
convention, green is forward and red reverse

motor port 3 -

Drive motors
| have a2 prong
—— plug

motor port 2

Plugged in motors
Motor Ports 0 and 3

Motor Direction

 Motors have grey wires with 2 prongs on the plug
O There is no left or right or colored wire
O You can plug these in two different ways

 Motors rotate in the direction that the electricity
(electrons) move through them one direction is
clockwise and the other direction is counterclockwise

*You want your motors going in the same direction,
otherwise your robot will go in circles!

Motor Port & Direction Check

 There is an easy way to check this!

O Manually rotate the tire and you will see a LED light up by the
motor port (port # is labeled on the board)

e If the LED is green it is going forward
* If the LED is red it is going backwards

<

e Using the manual tire rotation trick, check the direction and port #'s
of your motors
O If oneis red and the other green turn one motor plug 180° and
plug it back in
0 The lights should both be green if the robot is moving
forward ‘*

Other Motor Control Functions

motor (0, 100);

« Themotor () function is not always the best way to move your robot
because it is based on a % of power (battery charge)

0 As your battery runs down the power decreases and your robot will
not go as far in the same time period

O In competition when precision is required this is not acceptable
mav (); // Move at velocity ticks/sec

mrp ():;// Move to relative
position 1n ticks

Ticks

e A “tick” is a unit of measurement used when talking
about the rotation of a motor
e Botball motors have ~1000 ticks in one revolution

O Great math applications doing unit conversions
e Circumference in cm or inches = 1 revolution =~1000 ticks

|--.----.-.-- -------------

| This clock is divided : 1000 : This wheel is divided :

: into 60 second | I into 1000 “tick” 1

1 increments I ! increments I

___________ | D e e o o o s i o o
750 250

500

Other Motor Control Functions

Move At Velocity

* mav()
e mav (0, 1000)

Motor Port # Velocity -1000 to +1000 ticks/second
-/+ indicates direction

Motor Position in Ticks
(~1000 ticks/tire revolution

Move R?Iativ osition
e mrp (0, 1000, 3000) 5

Explain using comments

You can use a flow chart and then translate that
Into comments.

Using //comments as pseudocode is a great way
to start.

If you forget which functions to use, look at your
cheat sheet.

b

Activity 4
Move to Relative Position

Write a program for your robot to:

Psuedocode (Task Analysis)

1. //Move motor O forward @1000 ticks/second to a
position of 4000 ticks

2. //Move motor 3 forward @ 1000 ticks/second to
position of 4000 ticks

3. //Allow 6 seconds to complete moving to position

4. //Move motor 0 backward @ 1000 ticks/second to
position of -4000 ticks

5. //Move motor 3 backward @ 1000 ticks/second to
position of -4000 ticks

6. //Allow 6 seconds to complete moving backwards
7. //Shut everything off

Move forward 4000
Ticks

@,

Move backwards
4000 ticks
Turn motors off l

h
ITUTE™
"% TICAL
ROBOTIC

Activity 4 Solution

int main()
{

mrp (); //motor 0 @ 1000 ticks/second to position of 4000
ticks

mrp(); //motor 3 @ 1000 ticks/second to position of 4000
ticks

msleep (); //Allow 6 seconds to complete, should have a 2 second
pause

mrp (); //motor 0 @ 1000 ticks/second to position of -4000
ticks

mrp(); //motor 3 @ 1000 ticks/second to position of -4000
ticks

msleep (); //Allow 6 seconds to complete, should stop in 4 seconds

ao (); //All off

return O;

Motor Commands

motor (); Is great for turning gears or winding up string
on a pulley

Not so much for driving robots as it is dependent
on the battery charge
mav () ; Is great for driving robots and not as dependent
on battery charge
Greater precision of control
Must use msleep (); correctly

mrp (); Provides the most precise level of control
Most complicated to use

Robot Driving Hints

Remember your # line, positive numbers go forward and negative
numbers go backwards.

Reverse Forward
e

L1
1 11
5-4-3-2-1012345

Driving Straight- it is not easy to drive a robot in a straight line.
e Motors are not exactly the same
 The tires may not be aligned well
e One tire has more resistance, etc.
You can adjust this by slowing down and speeding up the motors.

Making Turns
 Have one wheel go faster or slower than the other

 Have one wheel move while the other ones is stopped (friction
is less of a factor when both wheels are moving)

 Have one wheel move forward while the other is moving
backwards

LET’S MOVE! Materials/Supplies

1. You need a surface to run the robot on

e Use the floor, desktop (watch for falling robots), a piece of white or light
colored foam or poster board or a vinyl or paper mat as a robot testing track

O You need an area marked as the starting line (a piece of black tape works
well or you can mark it with a black marker)

2. You need an object to navigate to
e Can of soda, foam block, whiteboard eraser, etc. will work
3. A measuring device and a timer will be useful

Soda Can

Starting line (Tape/Marker) i

LET’S MOVE!

Activity/mini contests

Using the simple motor function mav() ;, mrp() and
ms1eep () ; you can have the students work on fun challenges.

These activities can all be completed using hard coding (“dead
reckoning”) and simple motor control functions without the use
of any sensors. This is a good place to start and will teach the
students how hard it is to be consistent using dead reckoning.

e This is a good time to bring up controlling variables when
they set up their robot- is it the same every time? How
could you make it the same (using a jig or ruler to control
how they set it at the starting line)

Once they have the skills down of forward, backwards, stop, turn
then we can move on and start adding sensors and decision
making into the programs.

N

% [TUTE™
PRACTICAL
ROBOTICS

// Touch the Can

Robots must start on or behind the starting mark and move to the object
with the goal of touching the object in the shortest amount of time

Extensions
e Move the can to various distances
e Make the object smaller and harder to navigate to

e Math- have them measure the distance to the object and time the
robot and then calculate rate/speed

O Speed = Distance/Time

Starting line Starting line
Soda Can Soda Can

. i

Closest to the Can

Robots must start on or behind the starting mark and move to the object
with the goal of stopping as close to the can as possible without touching it.

e If they touch the can they must start over at the starting line

e Use rulers to measure the distance stopped from the can- make a data
table

* You can use a sheet of paper passed between the robot and can to
determine if it is touching

* You can limit the number of attempts and take the best run or have them
average several runs or add the distances together for a grand total

2. Move the can to various distances and locations

Starting line Starting line
Soda Can Soda Can

. jacL

Closest to/touch the Can and

“Go Home”

A variation on touch the can and closest to the can.

After stopping closest/touching the can, back the robot up until
touching the starting line
 Move the can to various distances

Starting line

Soda Can
a

Starting line
. B SEElEL Starting line
Soda Can

Circle the Can and
“Go Home”

1. Brings in the concept of turning

If you touch the can you must start over

The quickest trip is the winner

Move the can to various distances

Make them go clockwise and then counter clockwise

Starting line

Circle the Can(s) and

“Go Home”

Variation on Circle the Can

1. Have them make a figure 8 around two objects
2. Barrel Race (have them go around three cans)

Starting line -~ Starting link !\

// Park in the Garage

1. Robots must start on or behind the starting mark and park in
the garage (box or tape outline on board)
e Start with the garage straight across from the starting line

O Garage can be roomy and then make it a tight fit

O If they touch the garage they must start over at the starting line
e If they touch the garage they must start over at the starting line
e Move the garage to various distances and locations

Starting line Starting line

Garage

park in the garage and

Miss the Bicycle

“Park in the Garage” variation
O Place an object(s) between the starting line and garage

Starting line

Garage
i) Starting line
B I e

/ Walk the Line

Brings in the concept of driving in a straight line

* Robot must move without touching the line (easiest to hardest below)
O You can use one line and have the robot move down the side without touching it
e Make this a time trial-quickest time without touching (faster is harder to control)
0 You can make a lane and have the robot drive down it without touching either side.
* Increase difficulty by making the lane narrower

O You can use one line and have the robot straddle it with the goal of running the full
length without either wheel touching the line

Variations on Walk the Line

Same as before only have them stop and go backwards without touching the
line as well

e Add astarting line to begin and a finish line the robot must touch before
backing up

B

‘____

Variations on Walk the Line-
Jousting!

Robots on opposite sides of the line move towards each other and try to
knock object off of other robot

O Use whatever object is handy
Engineering Point-

Have the students engineer how they attach their lance (new unsharpened
pencils work well) to their robot

Race Track

Brings in the concept of controlled driving

Robot must move within the lane completing the course

Make this a time trial the fastest to complete the course with no errors

0 If you touch the line then you have to start over and the clock keeps running
* You can use a much larger track if desired (taped lanes on the classroom floor work well)
* You can use different lane setups

0 The tighter and more numerous the turns the more difficult it is

Extension- once finished, make them stop and back up all the way to the start

Functions

Goals

e To help students understand functions and how write their own functions for
repetitive tasks

e To understand that functions have two parts, a prototype and a definition

e To understand how to write a function prototype and definition

e To put a function prototype and definition into their code

Preparation

e Have KISS IDE up and running

* Have a robot ready to go

e Have markers if you choose to mark the path of the robots

Activity

e Have the students program their robots to drive a square (you can set the dimensions
however you would like)

e After being successful work through the “How to Write a Function” activities

e Have students complete the geometric activities using functions they write themselves

The Importance of Functions

 Now that you have the hard coding down with
the robots let’s move on to something that
teaches you how to write your own functions

O Start with the simple draw a square activity

Get your Robot to Draw a Square

Program your robot to draw geometric patterns

1. Start with having the robot make a 90° turn (both directions)
2. Now have the robot make a box

You will have to remember the path your robot is taking OR

0

Tape a marker to the back to mark on a piece of paper while
the robot runs

Once you have mastered using a servo the robot can raise a
marker up and down and actually draw on a piece of paper

i Created on Fri August 30 2013

int main()

{

printf("lets drive in a square\n®); fprint to screan
000); & pause for 2 seconds so0 you can read the scresan

matar (O,
motor (3,
msleep(d
matar (O,
moator (3,
maotor (O,
motor (3,

msleep(-

motor (O,
moator (3,
maotor (O,
motor (3,
msleep{
maotor (O,
moator (3,
matar (0,
maoator (3,

motar (O,
moator (3,
maotor (O,
motor (3,
msleep(d
motor (O,
motor (3,
maotor (O,
motor (3,

msleep(=

maotor (O,
motor (3,
matar (0,
motor (3,
msleep(d
motar (O,
moator (3,
ao();

return O;

100);
100);

00d); M drive forward for 4 seconds
)

0);/istop motars

100);

20%;

O0{); A turn to the right for 2 seconds
ok

Mistop motors

100);

100);

DOdy; A drive Torward for 4 seconds
E

Mistop motors

100);

20%;

A000Y: & turn to the right for 2 seconds

7} H

O0)iistop motars

100);

100);

DoOdy; A drive Torward for 4 seconds
Uk

Mistop motors

100);

20%

00a); Furn to the right for 2 seconds
8

Mistop motors

100);

100);

00d); M drive forward for 4 seconds
7} H

O)iistop maotars

Drawing a Square

Here is some code that uses
the motor(); and
msleep(); functionsto
drive the robot in a square

A Created on Fri August 30 2013

int main()

{

printf("lets drive in & square\n®); Jprint to screan
msleep{2000); / pause for 2 seconds so0 you can read the screen

motor (O, 100);

motor (3, 100);

msleep{d4000); M drive Torward for 4 seconds
mator (O, O);

motor (3, 0);Ystop mators

motor (O, 100);

motor (3, 20);

msleep{2000): & turn to the right for 2 seconds
mator (O, O);

motor (3, O):istop motars

motor (0, 100);

motor (3, 100);

msleep{4000); N drive forward for 4 seconds
motor (O, O);

motor (3, O);istop motars

motor (0, 100);

motor (3, 20);

msleep{2000); / turn to the right for 2 seconds
mator (O, O);

motor (3, 0):stop mators

motor (0, 100);

motor (3, 100);

msleep{d4000): N drive forward for 4 seconds
motor (O, O);

motor (3, O):istop motars

motor (O, 100);

motar (3, 20);

msleep{2000}); & turn to the right for 2 seconds
motor (O, O);

motor (3, O);istop motars

motor (O, 100);

motor (3, 100);

msleep{d4000); M drive Torward for 4 seconds
mator (O, O);

motor (3, 0):stop mators

aol);

return O

Drawing a Square

Notice there are many repeated
steps. For example:

//drive forward for 4

seconds
motor(0,100);

motor(3,100);
ms1leep(4000);

is repeated 4 times in this program.
* Andsois turn right for 2 seconds
e As well as stop motors

You will quickly learn to use copy and
paste over and over again, but there is a
better and easier way.

Learning to write your own functions
allows you to repeat code easily.

Writing Your Own Functions

e Remember, a function is like a title to an
instruction book. When you call the function it
does all of the commands in the book.

O0This can be very helpful if you are doing
repetitive actions such as making a 90° turn,
moving straight, turning 180°, moving an arm
up and closing a claw.

O It makes it easier to read the main program and
to simply change a value if needed

Remember a function has a name and arguments
name (); = motor ()

Variables Explained

Since variables in C have differing types, you have to specify the data type
for each of your function’s , and the type of data returned by
the function (which can be vo1d if nothing is being returned).

Many of the functions in the KIPR Library like motor (); have this
hidden.

Most of the time your students will only be dealing with vo1d (no data
returned) and 1nt (arguments).

Data types you may use:
Void Nothing is returned
Int Returns an Integer (whole number such as 5)
Double Returns a fraction of a whole (decimal such as 5.0)

Function Prototypes

Take some functions you are familiar with:
motor (); and mrp () ;

* The prototype or formats/name for them are:

void motor (int m, int p);

| 1

Data type returned | Function name | Data type for arguments

/ &’///:r”——————— \\:---"“->

void mrp (int motor port, int velocity, int pos);

You can find the prototype (format) for every function in the KIPR Help
Manual “KIPR Link Library”

Function Prototype & Definition

motor(0,100);
IF //drive forward for 4 seconds = motor(3,100);
ms1leep(4000);

A prototype is the name for your function that you will use when programming
In this case the function prototype would be:

void drive_forward();

And the function definition is what the function actually does, in this case:

. ! Notice there is no
void drive_forward() <« terminating semicolon

{ //definition start after the function name,
motor(0,100); //runs motor O at 100% because the robot needs
motor(3,100); //runs motor 3 at 100% to look for the definition
msleep(4000); //turns off after 4 seconds
1 //definition close (end)

Createdd
LR R

vioid drive _forward();
el emiming D -

Notice how the function prototype is
e e BEFORE the int main()

void drive_forward();

And the function definition is
provided AFTER the main program

e Note there is no semicolon after
the function in the definition

<y drive-tormard®
- {
motor (0, '
motor (3,]
msleep(}

: wvoid drive _forward() / }
{
motor {0, 100):
motor {3, 100):
msleap{4000);

i

JLCreated on Fri August 30 2013
| void drive_forward(); _r
int main)
{
printf(“lets drive in a square'n”); fprint to screen
msleep{2000); /f pause for 2 seconds s0 you can read the screen

Function Prototype (before the main)

mator (0, 0);
motor (3, 0)aistop motors
motor (0, 100);

maotor (3, 20);
msleep{2000); / turn to the right for 2 sec
maoatar {0, 0);

motor (3, 0)aistop motors

motar (0, 0);
motor (3, 0)istop motors
motor {0, 100);

maotor {3, 20);
msleep{2000); /turn to the right for 2 seconds
mator (0, 0);

motor (3, 0)3isop motors
mator {0, 0); i

motor {3, 0)istop motors

motor {0, 100):

motor (3, 20);

msleap{2000); / turn to the right for 2 s
motor (0, 0);

motor {3, 0)3istop motors

Notice the function calls

;ﬁ:tar[u,u};
et (5, Qe it Function definition (after the main)
aof); -

return O; -
} o —————
:\mid drive_forward() 1 -
1 f
I motor (0, 100);
: motor {3, 100);
I msleap{4000);
¥

N -

\———1———

s’

Function Prototype

Now that you have your drive forward function written you can write a right
turn function and put it into your program

// turn to the right for 2 seconds

void right_turn(Q); Prototype (goes before the main)
void right_turn() Definition (goes after the main)

{

motor (0,);

motor(3,20);

msleep()

}

Function Prototype

Now that you have your right turn function written you can write a stop
motor function

//Stop motors

void stop_motors(); Prototype (goes before the main)
void stop_motors() Definition (goes after the main)

{

motor(0,0);

motor(3,0);

}

M Created on Fri August 30 2013
void drive _forward();
int mainl.::-

{
printf("lets drive in a squaretn™); (print to screen
msleep{2000); /f pause for 2 seconds s0 you can read the screen
drive _forward();
mator (O, 03
motor (3, 0)aistop motors
maotor (0, 100);
maotor (3, 20);
msleep{2000}); //turn to the right for 2 seconds
mator (O, 03
motor (3, 0)aistop motors
drive_forward();
mator (O, 03
motor (3, 0)istop motors
motor (0, 100);
maotor {3, 20);
msleep{2000); //turn to the right for 2 seconds
mator (O, 03
motor (3, 0)aistop motors
drive_forward();
motor (O, 0);
motor {3, 0)istop motors
motor (0, 100);
motor (3, 20);
msleep{2000); /turn to the right for 2 seconds
mator (O, 0);
motor {3, 0)3istop motors
drive_forward();

Main is shorter and

easier to read

mator (0, 0);
motor (3, 0)istop motors
aol);
return ;

H
void drive forward()
{ pmmmmmmEmEEmEmm—————EE
maotor (0, 100); 1 Code without writing I
motor (3, 100); 1 K |
msleep(4000); I yourown functions |
} N e o o o e e ¥

N Created on Fri August 30 2013

vold drive_forward(};

vold turn_right();

void stop_motars();

int main()

{
printf("lets drive in a sguare\n”); 4print to screen
msleep{2000); / pause for 2 seconds so you can read the screan
drive_forward();
stop_motors(); /fstop motors
turn_right(); / turn to the right
stop_motors(y; /stop motors
drive_forward(};
stop. motors();istop motors
turn_right{}; / turn to the right
stop_motors();dstop motors
drive_farward(});
stop.motors();dstop motors
turn_right(); / turn to the right
stop. motors(); Vstop motors
drive_forward(});
stop_motors(); /fstop motors
ao();

return O

void drive_forward()
{

matar (0, 100);
mator {3, 100);
msleep(4000);
1

wvold turn_right(})
{

maotor (0, 100);
matar {3, 207;
msleep(2000);

Code with writing your
own functions

——
[Jepp——"

}
{
mator (0, 0};
matar {3, 1);

}

f Created on Fri Aug

ust Jdi 2013

void drive _forward();
vold turn_right();
void stop_maotors{);
int main()

{

printf{"lets drive in a sguarein”y; Aprint
msleep(2000); // pause for 2 seconds 8

drive_farward();

stop._motors(); fstop motors
turn_right(y; / turn to the right
stop_motors(); /stop motors

drive_farward();
stop._motors();fstop motors
turn_right(}; /f turn to the right
stop_motors(:fstop motors
drive_farward();
stop_motors():stop motors
turn_right(y; / turn to the right

stop._motors(); fstop motors
drive_farward();
stop._motors(); fstop motors
ao();

return (;

void drive_forward()
{

maotor (0, 100);
motor (3, 100);
msleep(4000);

'

void turn_right(}

{

motor (0, 100);
matar (3, 207;
msleep(=000);

}

vold stop_maotors()
{

mator (0, 0);

mator (3, 0);

}

[SCreen

0 you can read the

Advantages

1. It makes the main program easier to read,
o understand and spotting mistakes is much easier
1. It allows you to change a variable value one time
in the function definition for the entire program
e Let’s say you wanted to draw a smaller
square
0 Simply change themsleep() value
in your drive_forward() function
definition from 4000 to 2000 and the
msleep() valueinyour
right_turn() function definition
to 1000.

Tip:
Go to the end of the program and write the

definition first (remember no semicolon) and then
go to the top and fill in the prototype

/ Get your Robot into Shape!
Have the robots draw geometric patterns
1.

Have the robot complete a circle

2. Triangle, Star, Pentagon, etc.
3. Make sure you are writing your own functions for repeated actions in

the code
4. Great activity for math/geometry extensions

/T T
/ \
/ \
\ /
\ /
N
}
I\
~— =1 \——/V
\’ P
\
I o
N\
Ad N

Programming the robot to run for a set
amount of time

Goals
e Learn how to use the shut_down_in(); function to have the robot shut down
after running for a set amount of seconds

*In Botball teams must automatically shut_down_in() ;

Preparation

* You will need the DemoBot built and ready to go

* You will need computers with the KISS IDE

* You will need the USB download cable

* You will need materials for “Touch the Can” and “Circle the Can” activities

Activity
Follow the slides to make the robot shut down in XXX seconds

You can put a “Maximum” time limit to complete any of the previous activities

You have 3 seconds to complete your mission!

Use the provided robot or build your robot using the DemoBot
building guide.

Connect the Link to your computer

e Using the USB cable connect to the Link (micro usb port)

—

e Turn the Link on with the black switch on the side

OCD hqumea

KIPR LINK
CHARGER ONLY

Launch the KISS IDE

If already running just select new project

do
e Start the KISS IDE by clicking on its icon to get ﬁ
the welcome screen e

. ’CIick on the “New Project” icon
e |You will have to name and save your project

V= D 2 T 9%E Tuel2ll

sssss

@& KISS File Edit Target lHelp B w D 3 T <) 9%GE Tuel2:11
06 KIPR's Instructional Software System]

Welcome to KISS IDE

...............

N

Writing a Program

e Create a Robot Code folder on your desktop (you will use this
for all of your code)

e Name your new project “something descriptive”
Use the Browse button to save the project
into your Robot Code folder on your desktop

KISS File FEdit Target Help RE - D 2 T) 98%

 « StartPage
Welcome to KISS IDE

me |Teacher

on sve/Desklop/Robot Code/Teacher | Browse.

Writing Your First Program

* You will be asked if you want to add a new file

ew Project e
—
|
i =
New Project

|

Open

You just created an empty project. Do yol
want to add a new file? ’

Botball Community

No | [Ves | i

\\\\\

Notice your project
“teacher” now appears on
the side bar

New Project

Writing Your First Program

u now need to select a template

Select under the C files folder, Hello, World!

HHHHHH

You will be prompted to
name and save the new

file(use “something descriptive”)

The C Template: Hello, World!

i KIPR's Instructional Software System - No Target
File EdrtlEm.u'tE Target Developer Help
|| | |Fle " project | Open || Copy .« Cut [["Paste | (% Compile W Download = Run

StartPage *Untitled |

[3
i
[
Lid

//{ Created on Thu January 10

int main()

{
printf ("Hello, World!\n"):;
return D;

We will use this
template every

-l —

Programming your robot to run for a
set amount of time

The shut_down_1n(); function will end the program after
the number of seconds you put into the argument.

shut_down_1n(); //3 seconds
shut_down_1n(); //120 seconds

Uses

e Botball robots must shut down automatically at the end of the
round

You have 3 seconds to complete
your activity

Write a program for your robot that has it drive forward for 6
seconds and shut down in 3 seconds using the shut_down_1n
(3.0); function

Psuedocode (Task Analysis) 9

// 1. Shut down in 3 seconds s nsseconss |
// 2. Drive Forward for 6 seconds[DriveforwuardforGSeconds]
// 3. Shut off all motors 1T

[All motors off]

~
@

Programming your robot to run for a
set amount of time example

i Created on Thu September § 2013

void drive_forward(); <— Notice the function prototype for drive-forward
int main()

{
shut down_in (3.0); <
drive_forward(); // Drive forward

msleep(E000):d Allow 6 seconds to move forward
S Turn even ff . o
HO0: /I M M Even though this says to run for 6 seconds it will

return U; be shut down in 3 seconds

Program will end in 3 seconds

;

void drive_forward() «— Notice the function definition for drive-forward

{
maotor{0,100);
motor{3,100);

i

Programming your robot to run for a
set amount of time activities

Now complete the following activities again, but this time
make the time limit 60 seconds to complete the task

Closest to/Touch the Can \
and Go Home

1. A variation on Touch the Can and Closest to the Can.

2. After stopping closest/touching, back up until touching the starting
line
3. Using the shut_down_in(); give this a 30 second time limit

Starting line

Soda Can
a

Starting line
. - = =) Soda Can

O —
'_I: Starting line Soda Can
é--- i

/ Circle the Can and Go Home

1. Brings in the concept of turning

— |If you touch the can you must start over

— The quickest trip is the winner

— Move the can to various distances

— Make them go clockwise and then counter clockwise

2. Using the shut_down_1n(); give thisa 30 second
time limit

et

Variation on Circle the Can

1. Have them make a figure 8 around two objects
2. Barrel Race (have them go around three cans)

3. Using the shut_down_1n(); give thisa 90
second time limit

-~
Starting line =~ Starting lihe \

\
= Soda't\an 0 \\ l Soda Can

/ | \ ;3 ')
T, i I !E - - 7 !
I\ | <€ - -y S l
\ -
4

j Park in the Garage

Robots must start on or behind the starting mark and park in the

garage (box or tape outline on board), If they touch the garage they
must start over at the starting line

1. Start with the garage straight across from the starting line
e Garage can be roomy and then make it a tight fit
Move the garage to various distances and locations
Using the shut_down_1n() ; give this a 60 second time limit

Starting line
Garage
8

B -

Starting line

Garage

| R |

Programming the robot to start automatically
when it senses a light

Goals

e Learn how to usethe wait_for_light(); function to have the robot sense a light
and start

e Students will start working with and becoming familiar with using sensors

e Student will learn how to access and use the sensor list and sensor graph features on the
Link

* Autonomous robots need to start automatically when they sense a light

Preparation

* You will need the DemoBot built and ready to go

* You will need computers with the KISS IDE

* You will need the USB download cable

* You will need a light sensor and something to attach it to the robot (uglu, tape etc)

e The light sensor

e Aflashlight *THE SENSOR IS AN INFRARED SENSOR SO MOST LED LIGHTS WILL NOT
WORK (YOU NEED AN INCANDESCENT)

Activity

Follow the slides to make the robot start automatically when it senses a light

You can add the wait_for_1light(); tocomplete any of the previous
activities

Start your programs with a light

Thewait_for_Tight(); function allows your program to run
when your robot senses a light

e |t has a built in calibration routine that will come up on the screen
(routine is on following slides)

Tip: The light sensor senses infrared so it must he nn incandecrent
light and not an LED light &
* You need a flashlight

The more light (infrared) sensed the lower the reported value
Uses

The light sensor is used to start Botball robots at the beginning of the
game and it is a cool way to “automatically” start your robot

b

‘ﬁ ITUTE™
PRACTICAL
ROBOTICS

Plug in Your Light Sensor

and get your flashlight!

— 51 Sensor plug

,/anal og ports (0-7) and digital ports (8-15)

I Plug your light sensor \:
I
1

I
I into analog port 0 e
Nkl e) &

Reading Sensor Values From the Sensor List

You can access the sensor values from the sensor list on your Link

e This is very helpful to get readings from all of the sensors you are
using. You can then use the values in your code

g i IlililmllIIHIIIll!IiIIIllllllﬁlllIl!ﬂllllﬁlll!lililhliH!iii!lﬂﬂ!ﬂﬂmll"millllil!ﬁlﬂﬂlﬂ
{ i gng, l":l “% i ‘ %Zn 1' L
. ,ir ‘L k‘ i g i
alog 008 f
zi%f:;; aq .
i
I‘I i

]1!!!I!NIlllllimiluum"’*!w 1|li!|;1!fllilﬂ:l;iil If . W

n 11””“1’“]’1“ ”l 1
]
i mﬁﬂf-="'iﬂii“ﬂ”“'lﬁﬂ'ﬂl ’lﬂlnﬂlﬂ"ﬁ" |‘11‘. i MJZJI

e

|
ﬂﬂmn«

-

¢ el

pg Sensor 0
Analog Sensor 1
Analog Sensor 2
Anzlog Sensor 3
Anzlog Sensor 4
Analog Sensor 5
Analog Sensor 6

| Analog Sensor 7

Y 3
1411
1d11
1910
1dio

1(’11

i ----- Q&ngﬁagiznotsenﬁngﬁghﬂ

4NN BN NN EEN BN NN EEN BN NN EEN EEN EEN EEN BN EEN EEN BN EEN BN BN EEN EEN BN EEN BEN BE EEN BN S R S

Reading Sensor Values From the Sensor List

With the light sensor plugged into analog port #0
e With no light sensed the value is (992)
e When the flashlight is on and IR is sensed the value is much lower (38)

|Analog Sensor 0

'\ | Analog Sensor 1

Analog Sensor 2
Analog Sensor 3
Analog Sensor 4
Analog Sensor 5

Analog Sensor 6

Analog Sensor 7

[\7 a_IJg;Fgg (sensing light)

A . N BN SN NN BN NN NN SN BN BN SN BN NN SN N BN SN BN BN S BN SN NN SN N S

j atching Sensor values on the Sensor Graph
/i(ou can also have a real-time graph of all of the sensor

ports. Select the Sensor Graph and then select the sensor
port # (in this case, 0)

CALIBRATE: sensor port #1
light on value is = 22

‘[CALIBRATE: sensor port #1 ﬂff’i
liignt on value is = 12
press button when light off

light off value is = 10mg

|When the light is off (high value) H
|seIect Light is Off button j

The light calibration routine

When you use the function in your code the
calibration routine will start automatically

CALIBRATE: sensor port #l

#f light on value is = 12

i press button when light off
light off value is = 1008

k Good callbration!

Hirt = 99‘ WAITING

\

\J [Light is Off J

! You will get a Good Calibration!

: Message when done correctly IF
i NOT you will get a BAD

i CALIBRATION message (you need
i\to run through the routine agaln)

~———————————f,

| See the Light!

1) Write a program that uses a light sensor to start your robot
 Youshould have a light sensor plugged into analog sensor port #0

2) Have it run forward for 3 seconds and
then stop

Wait for light

Psuedocode

// Check value of 1ight sensor in analog_port 0

// Drive forward when sensor sees 1ight

// Allow 3 seconds to move forward Drive forward for 3 seconds

// Turn everything off [g
All motors off

| See the Light! Solution

M Created on Thu September 5 2013

void drlve__ forward(yi «— Notice the function prototype for drive-forward
int main{)

{
wait_for_light{0}; // Check value of light sensor in analog port O
drive_forward(); // Drive forward when sensor sees light
mslegep{3000); / Allow 3 seconds to move forward
aol); / Turn everything off
return O3

}

void drive_forward() «— Notice the function definition for drive-forward

{
mator(0,100);
motor(3,100);
}

| See the Light!

1) Addthe wait_for_light(); function to the start of any
of the previous challenges and activities

* You cannot touch the robot to start it, it MUST start on its own after
sensing the light

g? Touch the Can

Robots must start on or behind the starting mark and move to
the object with the goal of touching the object in the shortest
amount of time

2. The robot must be started with a flashlight

Starting line Starting line
Soda Can Soda Can

=

Using Servo motors

Goals

e To distinguish between motors and servo motors

e To help students understand how to use Servo Motors with their robots
* Enable, disable, set position and get position functions

Preparation

e Have KISS IDE up and running

* Have a robot ready to go

* Have a servo motor

Activity

Follow slides

Servo Motors (Servos)

A servo is a motor that rotates to a specified position between 0° and
180°

Servos are great for raising an arm or closing a claw to grab something

The motors and servos look similar except that a servo has 3 wires
(usually colored orange, red, brown) and a plastic plug on the end

Servo Motor Ports

servo ports 0 and 1; servo ports 2 and 3

Servo Motors (Servos)

e Notice the case of the link is marked:
0 - for the brown wire
0 + for the red wire (it is in the center)

0 S for the signal wire (regulates the servo position)

servo port 3
Servo port 2

orange wire (S)

red wire (+)

brown wire (-)

Servo Motors (Servos)

e If you think of a servo like a protractor

O The 180°is divided into 2048 positions (0-2047). Remember we start
counting with 0 and not 1

O This allows for greater precision when setting a position (you have
2048 different settings you can choose)

 The default position is 1024 (centered)

1024

il

P

Ny

10
AAD

80
400

90
90

il

2047

Servo Motors (Servos)

To help save power, servo ports by default are not active until enabled

Functions are provided in the KIPR Link library for enabling (or disabling) all
servo ports and for sending them to a position

enable_servos(); activates all servo ports
disable_servos(); de-activates all servo ports
set_servo_position(2,) ; rotates servo 2 to position 925

e Remember the range is 0-2047

e Default position when servos are first enabled is 1024, BUT You can
preset a servo’s position before enabling servos so it will immediately
move to the position you want when you enable servos

N

a

Servo Activity

. Make sure your Link is turned on

2. Plug a servo motor into Servo Port O

3. Follow the guides to access the Servos Page on the Link

Programs

L File Manager

%)
oJ
%]

C !‘ o' Motors and Sensors 3

C P Settings

Q‘]
iy

,] ww

i

Servo Activity
1. Use the Servo Page to test your Servo.

ul!i\iiﬂ%‘ﬁt"‘l i b

_sewos ll!iﬁil cervo Port
T “‘!‘"i"";atst1::::::uu1vsnumwuumwwn e

, Lorena)

This is the i “

Servo | et
Position Enables
the Servo

/ Servo Activity
1. Use the Servo Page to test your Servo.

il st

Use your finger to
move the dial

o

Servo .20
Maxed out — —
@ 2047 Servo @

1513

REMEMBER DO NOT KEEP PUSHING A SERVO BEYOND
THE 0 OR 2047 POINTS- THIS CAN BURN SERVOS OUT Servo KISS

@537 [y

Sensor and Motor Manual

For further detail
about servos, consult
the Sensor and Motor
Manual available via
KISS IDE help or on
your KIPR USB

/ Servo Activity 1
e Wave the pointer

e Using the servo and pointer on your demo-bot
WARNING

The servo mounted on your DemoBot is not free to move to all possible positions
because it will run into the chassis and the controller

e DO NOT keep trying to move a servo to a position it cannot reach as this
can burn out the servo as well as consume too much power

e Use the KIPR Link servo screen to determine the positions before hitting
the chassis and the link and then use them in the code

Home E!ack
Crome T

Servos

‘@ Port 3

| Enable

o = — P
(3 — QT
E - e &

|628 Dlsable

EEE? 7%

Servo Activity
set_servo_position();

Write a program for your robot to:

Psuedocode (Task Analysis)

. //Enable servos

. //Move servo 0 to 1400 OR # YOU DETERMINED FROM SERVO SCREEN

. //Allow 1 second to complete moving to position

. //Move servo 0 to 1024 OR OR # YOU DETERMINED FROM SERVO SCREEN
. //Allow 1 second to complete moving to position

. //Shut everything off

SO A WIN R

Servo Activity

set_servo_position();

Solution
int main()
{
enable_servos(); //enable servos
set_servo_position (); //Move servo O to 1400 OR # YOU DETERMINED
msleep (); //Allow 1 second to complete moving to position
set_servo_position (); //Move servo O to 1024 OR OR # YOU
DETERMINED
msleep (); //Allow 1 second to complete moving to position
ao (); //shut everything off
return 0;

}

j Waving Robot

e Now that you can move the servo to any desired position
make the robot wave continually

0 Write a function for the waving behavior and use it

Hokey Pokey (Dancing) Robot

ave the robots “dance” by moving their servo and their

motors to the Hokey Pokey
e Pick other songs and program the robot to dance
e Make sure and play the music so they have to
have some rhythm

You put your right hand in, //Move servo to pointing position
You put your right hand out, //Move servo to vertical position
You put your right hand in, //Move servo to pointing position
And you shake it all about, //Move robot back and forth rapidly

You do the hokey pokey,
and you turn yourself around, //Turn robot in a circle
That what it's all about.

Extensions

Touch the Can with Your Pointer

Robots must start on or behind the starting mark and move to the
object with the goal of touching the object WITH the LEGO attached to

the servo in the shortest amount of time

The pointer must start in the vertical position and then move to the
position required to touch the can

5
-.‘1 — !T)Li

10

e Move the can to various distances
e Make the object smaller and harder to navigate to

e Math- have them measure the distance to the object and time the
robot and then calculate rate/speed. Speed = Distance/Time.

Starting line

Soda Can

Starting line

Soda Can

Tag, Your Out

“Tag” with your servo pointer the objects that are then removed from the board

0 Must tag with the pointer only- if they touch it with any part of the robot other
than the pointer it does not count

0 Pointer has to change position to tag (they can’t drive around with the pointer
out front all of the time)

e Score points for every item removed from the area
0 Use some tape or a marker to indicate where they should be set up
* Place the items at known or set locations

O This is because they are still dead reckoning, once we learn more logic and
decision making, we will use sensors to locate and find the objects, which can
then be tagged and removed

Starting line i

Starting line

=

Variations on Walk the Line- \
Jousting

Robots on opposite sides of the line move towards each
other and try to knock object off of other robot.

e Use whatever object is handy
Engineering*

2. Have them use a servo motor to bring the lance from the
upright starting position to the striking position before
hitting the opponent

S

Moving Objects with your Robot

Now that you know how to move a servo you can design structures to collect
items and move them around on the game board

e Grabbing objects and dragging or lifting them to move them around on the
game board is very useful in Botball

0 You can use containment structures
O You can use claws/grippers
Engineering*

A structure can be built onto the servo on your Demo Bot that can be raised and lowered
to push an object (bulldozer) or dropped over an object and then keep the object with the

robot while it drags it somewhere else on the board (Bulldozers don’t work well in
reverse)

. You can build this out of LEGO or anything handy, foam board etc.

. REMEMBER your SERVO has a limit to how much weight it can lift without
stripping the gears 8

B=re. Ot

IS ST

3

-

4————’

I)

0 — 1o~

OO
ARG

lllllll

Moving Objects with your Robot

Claws/Grippers
Engineering™*

A structure can be built onto the servo(arm) on your demo bot that can be closed and
opened to grab an object

. You can build this out of LEGO and KMP

O There are a lot of photos of claws and grabbers on YouTube, the Botball
webpage and the Botball Educational Robotics Facebook page

. The easiest and first grabber to build has a static (unmovable) side and a
side with a servo that closes

O Write a function for opening and closing the servo

. You can use two servos, one to raise and lower the claw/gripper and one to
open and close the claw/gripper

Recycle the Can

Robots must start on or behind the starting mark and move to the object with the
goal of bringing the can back to the starting line.

Make the arm/claw/grabber start in the upright position and then lower itself after
starting or approaching the object.

Extensions
. Move the can to various distances
Make the object smaller and harder to navigate to

Math- have them measure the distance to the object and time the robot and then
calculate rate/speed

Starting line
Soda Can

Starting line
Soda Can I
| i (]

(____

—— —— =) Starting line

IIIIIII

(----

Soda Can

Y

OO
N

// Recycle the Can(s)
Same as recycle the can only with more objects

e Place the items at known or set locations

O This is because you are still “dead reckoning”, once we learn more
logic and decision making, we can program smarter robots that will
use sensors to locate and find the objects, which can then be tagged
and removed

Starting line

Starting line i

i Starting line

‘----

Engineering Design

Goals

e To help students understand how to use the engineering design when building their
robots

e Give students practice building with LEGO

* To compare and contrast different types of effectors

e To analyze a task first and then think about the design of an effector

Preparation
e Have a supply of LEGO available for students to build with
Activity
e Have students build mystery structures with their LEGO

O This gets them familiar with the LEGO pieces and how they work

0 Student tend to over build and make effectors TOO HEAVY for the task or the

motor
* Have students look at pictures of towers and bridges to see how they are
constructed
0 Point out that triangles are very strong and are often a good way to go

* Have students build structures for the tasks

*A great reference is the Art of Building with LEGO included in your flash drive.

Engineering Design Process

Engineers use this process to design, test and
produce products.

ENGINEERING DESIGN PROCESS STEMI™

ASK
What is the challenge?
e Are there requirements or

:? limitations? 9
e What do we know already? _ J
IMPROVE IMAGINE
Study test results. Modify Fa—
design to make it better. Test } Hrih:f:ﬁ;f,ﬁm:fﬂ:::“
it out again. 4 gn op
" b
CREATE 4 PLAN
Build solution based on { J Choose the best
. design. Draw a picture.

plan. TEST it out.
. K2OCENTER

Build with LEGO

e Using the LEGO provided by your Teacher
build a structure that:

— Is the highest free standing tower
— Is the longest cantilevered bridge

— Can support the weight of a can of soda the
highest off of a table

USE THE ENGINEERING PROCESS AS YOU
COMPLETE THESE ACTIVITIES

Bulldozers

Have you seen a bulldozer working before?
What job does it complete?

Thinking about the blade on the front of the bulldozer
— It is great for PUSHING objects
— Not good at pulling objects
— Not good at picking objects up

If your task is pushing something

A flat front blade like a bull dozer will work

e Unless there is too much stuff
ASK 0 Sides will help

What is the challenge? . .
arethererequremensser o |f you have to turn or back up, sides and a front will

limitations?
What do we know already? help

e Now the front has to be lowered over the objects

ade designs on robots

4 - What task are these designed for?

__Some bulldozer bl

[t

What are the advantages of these
| designs?

“\ ‘-‘-. It

What tasks wouldn’t these
designs work well for?

What are the disadvantages
of these designs?

-l —
-—

If you have to grab something and pick
it up a claw will work well

Notice the long lever sensor to tell Notice one side is fixed and the other is

when something is in the claw moved by the servo

KIS S

Let the Game Begin- Again

Complete the following activities

 Use the engineering design process to
engineer your effectors

Bulldozer Mania

Push as many objects as possible into the designated area

Engineering®
You will need to engineer some kind of a pushing device for the front of the
robot (use LEGO, KMP or any type of construction material)

0 Think about what a bulldozer looks like
e Objects can be anything as long as they are relatively easy to push
e Score points for every item in the area
0 Items “off” the official track are lost (no points)
 Make large piles that are easier to get
e Spread the items out to make it harder
* Place the items at random on the board

rting lin ing li i
Starting line Starting line i

5 O

.
=y
(222}

§\\\\\§

Bulldozer Mania

Variation
Push as many objects as possible out of the designated area

e Score points for every item NOT in the area
0 Items “off” the official track are lost (no points)
 Make the objects harder to move, use a full can of soda

Starting line

Starting line

g\\\\\g

0

Push the other robot or object out of the designated area
Engineering*

Sumo

You will need something on the front of the robot to help push the object
or other robot

Win a round by pushing the other robot or object out of the designated
area

Make the object harder to move, use a larger can of soup, etc.

77

EW‘@

Decision Making and Sensors
Goals

e To help students understand how to use sensors with their robots

e To understand the logic of programming with sensors

e To understand how to write and use awh11e loop
e Understand that the while loop doesn’t use a semicolon terminating

statement as the program keeps looping

e To use a digital lever sensor to sense when something is touched

e To distinguish between analog and digital sensors

Preparation

e Have KISS IDE up and running

e Have a robot ready to go

e Students will need a long lever touch sensor

e Print out the Boolean Logic Card for each student (on next resource slide) OR
e Put it on the wall, project it, etc.

e Print out the Boolean operator table (in resource slide to follow)

Activity

e Have students complete the Boolean operator table (true or false)

> Greater than

< Less than

>= Greater than or equal

<= Less than or equal

== Equal to

|= Not equal to

&& And - used to put several together

| | Or - used to select both options

! Not K133
0BG

> Greater than

< Less than

>= Greater than or equal

<= Less than or equal

== Equal to

|= Not equal to

&& And - used to put several together

Or - used to select both options
Not

Statement TRUE | FALSE Statement TRUE | FALSE
Example 13<10 X |Example 13<10 X
5== 5 ==
51=4 51=4
2<=6 2<=6
500 > 499 500 > 499
23 <300 23 <300
4 == 4 ==
321=32 321=32
Write the Write the
Condition Statement Condition Statement
five is less than or equal to nine 5<=9 five is less than or equal to nine 5<=9

Three is equal to Three

Three is equal to Three

four is equal to four

four is equal to four

Five is not equal to four

Five is not equal to four

five hundred is greater than two

five hundred is greater than two

thirty is greater than or equal to 5

thirty is greater than or equal to 5

Decision Making and Sensors

You should now realize how hard it is to be
consistent with dead reckoning

Now we will add decision making and sensors to
make our robots smarter

What is a sensor?

Sensor are detectors that measure a parameter and convert it
into a signal that provides information (value) to your controller

* Proprioceptive sensors
O Report on the current state of the robot itself

e Much like you know if you are sitting down or standing up
even if you are blindfolded

 Examples: encoders, gyros, low-voltage sensors
e External sensors
O Report on the current state of the world

 Much like you can see if the light is on or feel when the
temperature outside gets colder

 Examples: light sensors, range sensors, touch sensors

Smarter Robots

When you log onto your computer you must enter a password. The program
checks this against a stored value and if it matches, the code runs and opens.

e |If the password doesn’t match, the program runs a different set of code that
prompts you to try again or even locks you out!

 To make a smart robot, we need to check and compare sensor values
O Sensor values are either:

e Analog- Return whole number values between 0-1023 (10bit analog =
2 190r 1024- remember we start counting at 0)

O Light, small top-hat, ET
e Digital- Return a value of 0 or 1 (true of false)
0 Small touch, large touch, lever

*You can find sensor information in the sensor and motor manual on the KISS IDE
help

Smarter Robots

Sensor Functions

You call for the analog sensor value with a function
e You have 8 analog ports (0-7)

Analogl0(); Analogl0(1);

You call for the digital sensor value with a function
e You have 8 digital ports (8-15)

Digital(); Digital(8);

Sensor Ports

orientation

analog ports (0-7) and digital ports (8-15) IS S

Checking Values

 When writing code you use OPERATORS that allow the
program to check a value stored against another value to
determine if it is True or False.

Boolean operators

> Greater than 5>4is TRUE
< Less than 4 <5is TRUE
>= Greater than or equal 4 >=4 js TRUE
<= Less than or equal 3<=4is TRUE
== Equal to 5==5is TRUE
I= Not equal to 51=4is TRUE

*Until you are familiar with the Operators that you will be using, you
can use the “cheat sheet” for easy reference.

The Problem With Reading Sensor Values

e Remember your robot controller reads the
code at 8 million lines per second

0 This is why we used the msleep(); function
give the motors and servos time to move

 We must give the robot time to read the
sensor values we are checking

to

O Instead of having the program sleep (it can’t read

any values while sleeping), we simply need it to
keep repeating the code (looping) to give it time
to read the sensor values

b

[TUTE™

i

ICAL
0TICS

. It will continue
Looping Your Program to keep looping
until the sensor
is pressed at
which point it
will exit the loop

MOVE FORWARD] [

Is the lever
sensor
pressed?

We accomplish this loop with a wh1 | e statement

Keep the block of code running (looping) until sensor values can be
continually checked and a decision can be made.

The while statement checks to see if something is true or false
(Boolean operators).

Wh-| -I a) () Notice there is no

\ terminating

semicolon after
the while

Code to execute while the ™"
condition 1s true

¥

Drive Until Bump Activity

Robot will drive forward until the long touch sensor is pressed

b 43 ‘
\ i

0 You can hold the sensor while the robot is moving and manually
trigger it
* You will need a long lever touch sensor
e Plug it into any of the digital ports (8-15)

O Write a program using a wh1 1e statement that drives the
robot forward until the lever sensor is activated

L
g @

Drive Until Bump

Psuedocode (Task Analysis)

82

[Print lets see if....]

1. //Print let’s see if we can stop with a G
touch sensor [move ForwarD l
2. //Pause for 1 second so you can read the

screen

3. //Check the sensor value in digital port
15 and when not pressed == 1 (aka true)
keep checking and drive forward

4. //Exit Toop when sensor value in digital
port 1s pressed == 0 or !=1 (aka NOT
true)

5. //Shut everything off If YES

Is the
lever
sensor
pressed?

Drive Until Bump \
Solution \

/f Greated on Wed September 4 2013

vold diive_foriard0; / Notice the function prototype for drive-forward

int main()

{

printf{"lets see if we can stop with a touch sensor\n"); //print to screen
msleep(1000); // pause for 1 second so you can read the screen

while (digital (15) ==0) ck the sensor value in digital port 15 and when not pressed keep checking
{
Ariva farward: 1 Arive fangaed _ Notice no SemiCO|On after the

while statement

ao(); // all off

\ ool This is what the robot does
void drive_forward() while it is looping
{

maotor (0, 100);
motor (3, 100);) . C L :
} Notice the function definition for drive-forward

Drive Until Bump \
Solution \

{f Greated on Wed September 4 2013

void drive_forward();
int main()
{
printf{"lets see if we can stop with a touch sensor\n"); //print to screen
msleep(1000); // pause for 1 second so you can read the screen
while {digital (15) == 0) // check the sensor value in digital port 15 and when not pressed keep checking

{
dfe_forg@ard(); // drive forward
xit locomwhen sensor value digital port 15 is pressed

ao(/ all

retu -

}
void drive_forward()
{

maotor (0, 100);
motor (3, 100);

}

A variation on Touch, Closest to and Recycle the Can.
Engineering*

Bump the Can and Go Home

Students need to attach the long lever sensor to the front of their robot so
that it will touch the object first

Use the long lever sensor to detect when you have touched the can and then
return to the starting line

Move the can to various distances

el o
Starting line Soda Can Starting line

Starting line
Soda Can Soda Can

>

Engineering*

Capture the Can/Flag

variation on Touch, Closest to and Recycle the Can.

e Students need to attach the long lever sensor to the front of their robot so that it will touch the

object first and then have an arm with a Grabber/Claw that is lowered/closed around the can

e Usethe longlever sensor to detect when you have touched the can and then lower your

arm/claw/grabber to get the can

0 Many claw/grabber designs have a touch sensor that triggers them to close on an object

 Return the can to the starting line

e Move the can to various distances and locations

Starting line

Soda Can

Starting line
Soda Can

=
[N« @

(----

ONNAN

Can on a Pedestal

A variation on Touch, Closest to and Recycle the Can

ou will need a thick book (2-3 inches), dictionary, etc.
Engineering*

e Students will need to engineer a grabber/claw that will grip the object so that it can be

raised and lowered (simple bulldozing will not work) at least high enough to put on the
pedestal

 Use the long lever or other touch sensor to detect when you have the can within your
open claw so that you can grab it and raise it off the ground

e Place the can/object on top of the book (pedestal)
* Move the can and the pedestal to various distances and locations

Starting line

----»

Soda Can

777
2
v/,

Bump, grab
and raise

/ h11le Loop Operating a Servo

Suppose we want to have a servo move from position 200 to position 1800 in
steps of 100

We could do this by writing 16 separate set_servo_position
commands

With less effort and far better efficiency, this can be done by using a
while loop

i Created on Wed September 4 2013

int main()

{

enable_servos (); /turn power on to the servos

set_servo_position (2, 200); / move servo 2 o position 200

msleep{100); /give serva time to move

while (get_servo_position (2) < 1800)

{

sel_servo_position {2, get_servo_position (2) + 100); #/ move serva 2 in steps of 100
msleep{100); /give it time to move

}

ao();

return J;

wh1i1le Loops continued

We can use successive wh1 1e loops if needed to get the
desired behavior

Write a program that:

//Announces the program
//Starts with a 1ight

//Drives forward until large lever
sensor bumps

//Stops the motors
//Prints all done

wh1i1le Loops continued

ff Created on Wed September 4 2013

void drive_forward); < drive-forward
int main()

{

}

~ Notice the function prototype for

printf ("start with the light and drive straight until bumped\n®); Yannounce program

while (analog10({3} > ﬁuu}@ue of light sensor in analog port 3 when value is more than 500 ao

{
ao(); Notice no semicolon after the while statement

}

while {digital {9) ==} // check digital port 8 and when touch sensor isnt pressed drive forward

{
drive_forward(); Notice no semicolon after the

} ‘when digital 8'= 0 move on o the next line Wh'l -| e statement

ao{); // stop motors

printf ("all done\n™);

return (;

void drive_forward() e— — Notice the function definition for drive-forward

{
motor (0,100);
maotor (3,100);
}

IF Statements and Following Lines
Goals

* To help students understand how to use sensors with their
robots

* To understand the logic of programming with sensors

e To understand how to write and use an 1T statement

e To understand how to use the hard and soft buttons on the link

e To understand how to rename the soft buttons on the Link

e To use an IR reflectance sensor to follow a black line

Preparation

e Have KISS IDE up and running

 Have a robot ready to go

e Students will need a small reflectance sensor

Activity

Follow the slides and complete the line following activity

Buttons

Having buttons on the controller can be very useful when programming your robot

On the KIPR Link there is 1 physical button (named side) and 6 soft buttons (named
a,b,c,x,y,z) on the screen

e All have name_button() functions which return 1 if the
button is being pressed and 0 otherwise

e All have name_button_clicked() functions which pause if
the button is being pressed and then returns 1 when it is released
or returns O otherwise

e Soft buttons can have their display changed by using
set_name_button_text ('display text) ;

e By default only a, b and c are displayed. The 3 extra buttons can
be shown using:

extra_buttons_show();
extra_buttons_hide();

Name Your Buttons Activity
Psuedocode (Task Analysis)
1.//Announce program

2.//Change button a to “start”
3.//Change button b to “stop”

f Created on Thu September 12 2013

int main{)

{
printfi("Button Test \n"); fannounce program
set a button_text ("startn™):/ change button a text to start
set _b_button_text ("stop'\n™):fchange button b text to stnp|
return U;

1T Statements

1T statements allow the code being run by the program to be
changed (If the bump sensor is pressed, do this)

Just like the wh1i 1e statement no

if (Va1M semicolon is used after the 1T statement
1

Execute this 1ine of code- whatever 1is
between curly braces

}<—

*You can use 1T statements within a whi e loop

// Line Following Activity

Usingwhileand1f

You will need a Small Top Hat Sensor ST
——

e

This sensor is really a short range reflectance sensor. There is an
infrared (IR) emitter and an IR collector in this sensor. The IR emitter

sends out IR light and the IR collector measures how much is reflected
back.

e Amount of IR reflected back depends on surface texture, color and
distance to surface

This sensor is excellent for line following

e Black materials typically absorb IR and reflect very little IR back, and
white materials typically absorb little IR and reflect most IR back

0 If this sensor is mounted at a fixed height above a surface, it is easy to
distinguish a black line from a white surface

Reflectance Sensor

Thisisan analog(10) sensor so plug it into any of f'i"%
your analog ports

 Values will be between 0-1023
Mount the sensor on the front of your robot so that it is
pointing to the ground and ~1/8” from the surface

-

Surface

orientation

|
s . A
2 J =
vEZh -
o3

analog ports (0-7) and digital ports
(8-15)

Plug in Your Reflectance Sensor

orientation

—————— -y

\

Reading Sensor Values From the Sensor List

ou can access the Sensor Values from the Sensor List on your Link

e This is very helpful to get readings from all of the sensors you
are using, and then you can then use the values in your code

H
|||m||mmmuuummunmnummmuuml1nummmmmmnuummlm!mnm
l

=

WA
tl'ls iH! s

"imwl}ﬁ |

‘“ L
“dfhﬂhﬂ | H

Niilu

ﬂHuHIIH
.

1“‘H|uum1l

/ Reading Sensor Values From the Sensor List
With the IR sensor plugged into analog port #0

e Qver a white surface the value is (56)
e Qver a black surface the value is (863)

alog Sensor 0
log sensor 1
log Sensor 2

Line Following Activity

Usingwhileand1f

Write a program for your robot that:
Psuedocode (Task Analysis)

. //Announces program

. //Checks the status of the a button

. //Checks the value from the reflectance sensor
. //Turns left if value is >= 512

. //Turns right if value i1s < 512

vr A W N B

Line Following Activity Solution \
Usingwhileand 1f \

if Created on Fri September 13 2013

int main()
{

Notice the use of the a button for the

printf ("line following programin®); /annonces prny whil e.loop. This IEt.S th.e program
while{a_button{) ==0)// checks status ofthe a_butto run until the button is triggered.

{

N
\
/

< _______________________________________
H{analog10{5)»=512) /ichecks value fram reflectance sensor in port #5

{ //tum left
motor{(,50);

motor{3,10);
) /

H{analog10{5}512) /i check value from reflectance sensor in port # 5

The value of 512 or the
“threshold” value is % way
between the 1024 possible
values. Remember black
reflects less IR than white
so the value is lower.

Notice NO semicolon after the i statements

e e e |

Notice the Boolean

\\-———————————————'

e 5 J
{ /Murn right \ operators >= 512 or < 512
motor(d, 1 0); N e .
motor{3,50);

}

Line Following Activity Solution

Notice the misspelling of “announces”. Comments
Il Created on Fri September 132013 €an be misspelled or even shorthand, as long as your
team understands what it says. The computer will
int main() not execute any comments, you can even write a
{ poem in the comments!
printf ("line following programin®); fannonces program
while(a_button{) ==0)/ checks status ofthe 8 _button

o o -
: \

W{analog10{5)>=512) /ichecks value fram reflectance sensor in port #5 P bt =~
{ iturn left
motor{C,20);

motor(3,10); The i f statements are all

within the whi e loop.

-
N -

]
1
1
1
1
:
} i .
. : ' This lets the program run
W{analog10{5ke512) // check value from reflectance sensor in port# 5 | until the while statement is
{ fturn right ' not true (a_button
motor(l,10); i pressed)
motor(3,00); \\ S
} ittt
__ -
} (1SS

Line Following Activity Solution
Tip

if Created on Fri September 13 2013

int main()
{

A printf (line fallowing programin®); fannonces program

while(a_button{) ==0)/ checks status ofthe 8 _button
{
A

W{analog10{5)>=512) /ichecks value fram reflectance sensor in port #5
{ iturn left
mator(U,50)
mator(3,10);
}
Wanalog10{5)e512) / check value from reflectance sensor in port # 5
{ ffurn right
mator(U,10);
maotor{3,590);

The program can get hard to

A4
14
vl I
} ! read. One way to make it
| easier is to make sure your
1
H l

D —
- -
g
— - r
=9

curly braces { } are lined up

/ Follow Me

Using the reflectance sensor(s) have your robot follow the line

You can make this a time trial

Start with a straight line and then move on to curved lines
O The tighter the turn the harder it is to follow

Have the line come to a T intersection

Engineering*

Students need to attach the reflectance sensor(s) to the front of their robot
Have the students use a sensor on each side of the line to see if it improves
performance

Is it better to have the sensor(s) in the front or the back of the robot?

How far apart should they be?

{7

Using the reflectance sensor(s) have your robot drive forward until it
senses a black line at which point it stops

 Move the line to various distances

 Make the robot find the line, stop and then back up to the starting
line

| : | |

Measuring Distance Using the ET
Goals

* To help students understand how to use sensors with their
robots

* To understand the logic of programming with sensors

e To write a program to print a sensor value to the screen

e To use a range finder sensor (ET) to measure a distance

Preparation

e Have KISS IDE up and running

 Have a robot ready to go

e Students will need a range finder sensor

Activity

Follow the slides and complete the activity

Measuring Distances

You will need the ET Sensor

The “ET” sensor gets its name from the shape of the sensor
resembling a famous movie Extra Terrestrial.

This sensor works by sending out an IR beam and measures the
angle the reflected IR light returns at and triangulates the
distance to an object.

e Maximum detection distance: 80cm

This sensor makes a great medium range distance sensor

e The sensor reads the highest value when it detects an object at
5cm, and value decreases if your object gets closer or farther
away

O One way to fix that is to mount the sensor in such a way that
nothing can get closer than 5cm

b

4

FOR

Reflectance Sensor

1. Thisisananalog(10) sensorso plugitinto
your analog ports
2. !FLOATING PORT!
3. For this sensor to work properly you must always change
the analog port that you plug it into to a floating point!
0 This is the only sensor that you have to do this for
e Don’t worry, we have a function for this

set_analog_pullup(7,0);

Port #7 The 0 sets it to floating

Put this in your code right after the
int main()

Reflectance Sensor

Mount the sensor on the front of your robot so that it is
pointing forward

2. Plug the ET into one of your analog ports and remember
the port #

orientation

!
-
mohs 5 -
| -
- R < |
N -4 3
3

analog ports (0-7) and digital ports
(8-15)

- ::-b_-—ﬁgmm-—-q—»ﬁdﬂt’w e
AR e e s 3

,a'nal og ports (0-7) and digital ports (8-15)

N
! Plugyour IR sensor '
| intoanalogport0 |

Because you need a floating point you cannot
use the sensor list to read values

Use the following code to print the value to the Link
screen

i Created on Thu October 3 2013

int main()
{
set_analog_pullup (0, 0); /et analog port 0 to floating
while (2_button{) 1= 1) /' while a button |5 nat pressed
{
printf {*%i\n", analog10 (0); // %! Is & place holder on the screen for the value, in this case an integer refumed by analog 0
mslaep (200)0 prints the value at 5 readings per second to give vou time to read them
}

return (;

}

Reading the ET Sensor Values

While running the program hold an object in front of
the sensor at different distances to read the corresponding
value

{ ET ~12 inchs from i
..................................... | Link |
| Valueis 158 |

.
..

s L perk §LGock sceeny)

lm“;m i ”"
VA I

S

ET ~1 inch from
Link
Value is 387

oS T ———
T L L L

ET Sensor Activity
Using whiTe and 1 f
Now that you have some values to work with, write a program

for your robot that uses the ET sensor to maintain the same
distance from an object

e Too close- backup

e Too far away- move forward
e Just right- stop

Psuedocode (Task Analysis)

//Announces program

//Checks the status of the a button
//Checks the value from the ET sensor
//Moves backwards if the value is > 525
//Move forward if the value is < 475
//Stops 1f value is >= 475 and <= 525

ET Activity Solution \
Usingwhileand 1f (x3) \

i Created on Fri September 13 2013
Remember you have to set the port the

:"‘ maing / ET is using to floating or it won’t work

set_analog_pullup(7,0); / change port 7 1o floating analog

while(side_button{}==0)/checks status of side button Notice the use of the side button for

{ “— the whileloop. This lets the program
H{analog10{/)>525)/read value in analog port 7 run until the button is triggered
{imove backwards
motor(0,-100); e mmmmm—————————————— -

~

mator(d,~100);
H

»

Students can use the sensor
screen to read the values the ET
sensor returns at different
distances so they can figure out
what value goes with each
particular distance.

* Remember the minimum

if {analog10({7 =4 75)read value In analog port 7
Hfmove forward
motor{0, 100);
motor{3, 100);

oon TN N Sy,
-

} distance is ~5cm (mount the ET
f(analog10{7)>=475 && analog10{4)< 525) iadvalue in analog port 7 sensor at least 5cm back from
{ /istop \ the front of your robot) /
aﬂ[:l'; \\N _____________________ a'l
1
} [\ \i'

Touch the Can with the ET

jobots must start on or behind the starting mark and move

to the object at MAXIMUM SPEED with the goal of slowing

down when they are a set distance from the can before they
touch it

e This will teach students how to slow down when approaching an object

e Use rulers to measure the distance stopped from the can- make a data table

* You can use a sheet of paper passed between the robot and can to determine
if it is touching

* You can limit the number of attempts and take the best run or have them
average several runs or add the distances together for a grand total

e Change the “slow down” distance
0 A short slow down distance will teach students about momentum

Starting line
L _ B B BN | »

Maximum Slow i
Speed Zone

Soda Can

Follow the Wall

Using the ET sensor have your robot follow a wall maintaining a set
distance from the wall

e The robot goes straight IF the value is....

e The robot turns toward the wall IF the value is....

e The robot turns away from the wall IF the value is....

You can use foam board or some other solid object for the side wall

Using the Camera to Track Objects
Goals

 To understand how to designate a channel and set the color
model

* To help students understand how to use the camera with their
robots

 To understand the logic of programming with the camera

* To write a program using the camera to follow an object

Preparation

e Have KISS IDE up and running

 Have a robot ready to go

e Students will need a camera mounted onto their robot

* You will need a colored object to track

Activity

Follow the slides and complete the activity

Using the Camera

You will need the USB Camera

e The USB camera plugs into one of the USB (type A) ports on
the back of the KIPR Link

 Unplugging the camera while it is being accessed will usually
freeze the system, requiring a reboot

O-CD hquned

KIPR LINK

CHARGER ONLY

USB
Ports

/ Setting the Color Tracking Channels
1. Select “Settings”

2. Select “Channels”

T T

1. To specify a camera configuration select “Add”
2. Enter a configuration name such as “find_green” then press enter
3. Highlight the new configuration and press the “Edit” button

-. Examp

oy S [
€) Add | imple.con

o2 (s (9] flolh[] [k

SRy stz [x[c|v[b]|n|m
123] Space [Ent.

Setting the Color Tracking Channels
. Press the “Add” button to add a channel to the configuration
2. Select “HSV Blob Tracking” then “OK” to make this track color

3. Highlight the channel and press the “Edit” button to edit settings
* First channel is O by default you can add three more 0,1,2,3

Bl o I.-!- 1

Setting the Color Tracking Channels
1

. Place the colored object you want to track in front of the
camera and touch it on the touch screen
e The program will put a bounding box (dark blue) around the
selected object then hit “Done”

F / [ﬁ o Visual ~=_]

|:-Ju;= Manual |

Setting the Color Tracking Channels

erify the channel is working

1. From the main screen, select “Motors and Servos”

2. Select “Camera”

e Objects specified in the configuration should have a

U0 e an SRUINON i)

@ oo X

About Color Vision Tracking

For color vision tracking, images are processed by the KIPR Link to identify
"blobs" matching the color specification you set in the channel configuration.

 Ablobis a set of contiguous pixels in the image matching your channel
color specification

The camera image size is in pixels 160 X 120
e Remember we start counting at O

160 Imagine an x and

? Wy y coordinate
& | system. We start

in the upper left
corner and read
the image like a
person reads text.
Top to bottom
and left to right. (159,119)

S8

STITuTE"

y ACTICAL
BOTICS

120
tall

About Color Vision Tracking

You can use the position of the object in relation to the center of the image to tell if it is to

the left or right
* And if you know that the image is 160 wide, then the center is 80
0 Between 0 and 79 is to the left
O Between 81 to 160 is to the right
0 80 is straight ahead

*You can also use the position of the object in relation to the y axis to tell how far away it is

1(80,0) (159,0)

Will generate a number between 0 and 159

(159,119)

(80,119)

Camera Functions

camera_open(LOW_RES); //sets resolution

e Choices include LOW, MED and HIGH. LOW is best for most applications |

camera_close(); //closes camera
camera_update (); //retrieves current 1mage

get_object_count (); //retrieves number of
objects specified by the channel settings
with 0 being the largest object specified 1n
the area

get_object_center (channel, #); //retrieves x
and y coordinate of the object
get_object_center (channel, #).x;
get_object_center (channel, #).y;

g} Camera Activity Usingwhi1le and 1fand el se
Psuedocode (Task Analysis)

1. //Prints Move towards object and Press B button
when ready

. //Checks the status of the b button
. //Checks the status of the side button
. //Updates camera image
. //Turns left toward object
. //Turns right toward object
. //Stops 1f no object 1n sight
. //Stops when side button 1s pressed
9. //Prints done
*This is the same type program as the line follow activity, but
instead of the reflectance sensor it is using the camera. Because
it knows that 80 is the center of the image anything <80 is to the

left, so turn left, anything >= 80 is to the right, so turn right, if it
doesn’t see anything then it stops.

O N O U1l A W N

M Creatad on Wed Oct9 2013

™ Mowve the robot towards the largest object on channel 0.
FRobots stops if no object is detected™f
imt main()

i

Soluti
camera_open{LOW RES); O u t I O n
printf{"Move towards objectan™);
printf{"Press B button when readywntinPress side button to stop'n™);
while{b_buttonj==0)
i
ao(d;
} & wait for button presg
while{side_button(==0) /f while side button is not pressad
i
camera_update{): Mfoet a neaw image o analyzea
iffget _object count{0)=0)

i
if{get _object center{d, 0} < 850}
{4 if object is aon left...
mator{d,100);]|
motor{3,10); 4 turn left
}
if{get_object_center(0,0).x == 80)
£47if object is on right...
motor{0,10);
mrotor{3,100): Murn right
}
}
else
i
aof): /fmo object detectad
}
¥
acf): /fstop because button pressed K \S
printf{-dona'\n™); C 0F

return O;

-
-
-— - -

-l —

Camera Activity Solution

d Pl P P P P el P P P P

e

A Created on Wed Oct9 2013

™~ Mowe the robot towards the largest object on channel 0.
Robots stops if no object is detectad™r

int main)

{

camera_opaen{LOW_RES);
printf{"Mowve towards abjecta™);
i Fress B button when readyw'nPress side button to stopn™);

This program uses 2 wh1 1 e loops
e Remember no semicolon
after the wh1 1e statement
e The first while is simple
e The second while contains
3 1f statements and 1 else
statement
e If thisistrue do this
else (if it is not true) do

this
; / stop because button pressed y
printfCdone\n™); l‘ * "
return O; h

Camera Activity Solution Usingwhi1le,1f and else

W Created on Wed

e

COcto 2013

Mowe the robot towards the largest object on channel O

Robots stops if no object is detectad™f
int main)

{

Sets camera to LOW RESOLUTION

camera_open{LOW RES): €
printf{"Move towards abjectan™);

printf{"Press B button when readywinPraess side button 1o saspias

while{b button()==0) <€

i
aof);
¥} M wait for button press

First while loop waits for b button push to start

Notice the use of the side button for the while loop

while{side hutmn:]:::_‘l}(—wrme zide button is not pressed
{

This lets the program run until the button is pushed

TR T o P ey e

camera_ update() ;e

"{QET ﬂb]Eﬂt {x:um{u}:a-:_l}\
i
if{fget _object center(d,0).x < 850)

£ i1 object is on left...
mator{,1 :'.‘.:J};|
motor{3,10%; /M turn left
1
if{fget _object center(d,0)x == 80)
{/f Il object is on right...
motor{,10);
motor{3,100): Hturn right
i
1

Updates to most recent camera image

Checks channel O for the largest object =0 and if it is
>0 (in other words, it sees something) then it...

Checks to see where the object is in relation to the x
axis. To the left then turn left, to the right then turn
right (80 is the midpoint of the 160 pixel image

else €
i
aofdy: fno object detectad

}

Checks channel O for the largest object =0 and if it is
=0 (in other words it doesn’t see anything) then it
turns the motors off

¥

ao): stop because button pressed
printf{Cdonen™);

return O;

*Make sure the students line up the curly braces

- -
-l —

otherwise it is easy to get lost

if Created on Wed Oct 2 2013

™ Move the robot towards the largest object an channel 0.
Raobots stops if no object s detected”f

int main()

{

camera_open{LOW _RES);
printf("Move towards objectin®); I r r ‘ rove C a S e
printf{"Press B buttan when readyin'nPress side button to stopin®);

while(b_button(}==0)

the Object

while{side_button{==0) // while side bufton Is not pressed
{

camera_update(); fget a new image to analyze

if{get_object_count{0)=) .
e You can add another if statement

if{get_object_center(0,0)x < 65)

s to have the robot go straight if the

maotar{0,100);

motor{3, 10); / turn left . . .

o object is near the middle
if{get_object_center(0,0)x = 55)

{7 if object is on right...

motor(0,10);

motor{3,100); Mturn right

Iz ;—} &

}

else
{
aof}; //no object detected
}

aof); // stop because button pressed
printf{’done\n”);
return (;

}

Find the Can with the Camera

1. Robots must start on or behind the starting mark then using the
camera, find the can and move to it
e Move the can to random locations

Starting line
Soda Can

*The Create platform comes with the intermediate and
advanced starter kits as well as with a Botball kit

Create
* |s an educational platform from iRobot based on the Roomba
vacuum

* jRobot partners with the KISS Institute for Practical Robotics
to provide the platform for student use in the Botball
Educational Robotics Program

* The platform has built in sensors that can be accessed and read with
The KIPR Link robot controller

* More information can be found in the KIPR LINK Manual

You have the
KIPR LINK
Manual on the
flash drive
provided to you

Charging the KIPR Link Controller

* For charging the KIPR Link, use only the power

supply which came with your Link
0 Damage to the Link from using the wrong charger is easily
detected and will void your warranty!

e The KIPR Link power pack is a lithium polymer
battery so the rules for charging a lithium battery for
any electronic device apply

O Only an adult should charge the unit
O You should NOT leave the unit unattended while charging

0 Charge away from any flammable materials and in a cool,
open area ‘

R

i

Charging the Create

e For charging the Create, use only the power supply
which came with your Create

0 Damage to the Create from using the wrong charger is
easily detected and will void your warranty!

e The Create power pack is a nickel metal hydride
battery so the rules for charging a battery for any
electronic device apply

O Only an adult should charge the unit
O You should NOT leave the unit unattended while charging

0 Charge away from any flammable materials and in a cool,
open area ‘

R

i

Plugging charger into Create

Use only the Create charger provided with your kit
The charger plugs into the power socket

Omnidirectional
IR Receiver

Handle

6-32 Mounting
Cavities

Tailgat
ligate . Prial Port
> 4

Charging Socket

Cargo Bay
Connector

R

Learning about the Create

Goals

 To be able to insert the battery into the Create properly

* To be able to identify the serial cable used to connect the Link to the Create

 To understand how to place the Link inside the Create Cargo bay

 To understand the proper charging procedure for the Create (only an adult,
only under supervision at all times, not around water or flammable materials)

Preparation

Have a Create and LINK controller available for students to examine along with a
projection of the resource slide with pictures of the controller OR give students a
printed sheet of the resource slide

You will need a KIPR Link-Create cable

Resources
The KIPR Link Manual (on your flash drive)

Learning about the Create

Omnidirectional
IR Receiver

c.'/ Handle

6-32 Mounting
Cavities

Talgpce Serial Port
Cargo Bay
Charging Socket
Cargo Bay
Connector
Cliff S ey
Openings N The LINK sits in the cargo bay of the Create
= Polnts for * You will need to attach the fourth wheel
Home Base . .)
(it simply snaps into place)
Wheel Clips
Battery

Fourth Wheel

Installing the battery in the Create

Cliff Sensor The yellow battery snaps into place
Openings Contact
Points for on the bottom of the Create (make
sure both sides snap into place)

Home Base

Battery lj 1!

{-4
00
*.

Fourth Wheel

attery has a long and a short
tab that matches the slot in the
Create

KEY

HDMI port speaker side button [a Motors —] L ;azslensor Graph J

l[ﬁ} PID Tuner | | .= sensor List J

| Servos ___| | = Camera |

@'C {: 3§VI|mgml
egulater
KIPR/LINK
CHARGER ONLY

-

TTL serial USB 2 USB Power

8 analog 8 digital

sensor ports sensor ports
2 servo

motor ports 2 servo

motor ports

power switch IR Sensor 2 motor ports
2 motor ports

O-CD hamea™
KIPR LINK

CHARGER ONLY

—na e

We use the serial cable to plug into the Link TTL
Serial plug

NOTICE the red mark on the plug (left side) this
corresponds to the red wire in the serial cable

=

Link serial plug

Power connector Correctly plugged in

Create connector

Plugging serial cable into Create

We use the Create connector (round) end

Link serial plug

Create connector Receptacle may have a cover that
you can pop off to access

The plug is keyed, make sure
you line it up correctly before

plugging it in

Know your Create

Have a show and tell describing, explaining and
pointing out:

* The serial cable
 The serial port on the Create
 The serial port on the Link

e The correct orientation for the serial cable to
be plugged into the Link

Moving the Create

Goals

* To reinforce the concept of a function

* To learn and use the functions for connecting to and moving the Create
Preparation

* You will need a charged Create and Link + the serial cable to connect them
* You will need computers with the KISS IDE

* You will need the USB download cable

Activity

Follow the slides to make the robot move

Activity 3

Lets make a robot move!

Use the Create with a Link controller in the cargo bay connected
with a serial cable

Launch the KISS IDE

ﬁ KISS IDE icon

Start the KISS IDE by clicking on its icon to get
the welcome screen

Click on the “New File” icon and

and choose](ve C, “Hello, World!” template
\-" 0 ok Templates

WEIcome to KI Pl%electatempiate:

o

v = iles Please select a template or template
Header File pack to the left. A description of that
item will appear here.
& Hello, World!
¥ || C++ Files
0+ Hello, World!

Remove Template Pack | Cancel | [L|

Select Target

e A Target Selection window will appear

e Pick “USB Target” and the C program template will come up

Select the target youWish to communicate with:

1 A 5
L s !
Nﬂ Tafget]fdev ,Irt{'f U.Sbmﬂde | i KIPR's Instructional Software System - No Tar et
| File Edit | Source Target Developer Help
:“ | File ! Project | | Open | || Copy lCut G_'-Pastr |IS§Compﬂe W Download = Run
| StrtPage *united | w
|
i // Created on Thu January 10 Z013
|
i int main()
i {
i printf("Hello, World!\n");
i return 0;
i }
|
|
|
|
|
i
Show targets communicating over: ' | All Interfaces =

|._I;"I-AEIIT-| |-_R§E§ﬂ_.| || Show Additional Information | Cancel | i__rjk_'l

The C Template: Hello, World!

i KIPR's Instructional Software System - No Target
File Edrtlﬂm.rce Target Developer Help
|| | IFle " iProject | Open || |Copy o Cut [{"Paste | % Comple WP Download = Run

StartPage *Untitled |

i
i
[
Lad

// Created on Thu January 10

int main{()

{
printf ("Hello, World!\an");
return 0O;

We will use this
template every

-l —

O-CD hamea™
KIPR LINK

CHARGER ONLY

—na e

We use the serial cable to plug into the Link TTL
Serial plug

NOTICE the red mark on the plug (left side) this
corresponds to the red wire in the serial cable

=

Link serial plug

Power connector Correctly plugged in

Create connector

Plugging serial cable into Create

We use the Create connector (round) end

Link serial plug

Create connector Receptacle may have a cover that
you can pop off to access

The plug is keyed, make sure
you line it up correctly before

plugging it in

unctions to Connect & Disconnect

We must tell the controller to use the serial cable to send
commands to the Create

*The Create must be turned on for this to work 9
create_connect () s //tells the Link to use the serial
connection to the Create create_connect 0]
create_disconnect () ; //tells the Link to QUIT using the
serial connection to the Create [Drive Forward 2 sec]
. . [Turn Motors off]
ALL programs used with the Create MUST start with

create_connect(); andend with create_disconnect();

create _disconnect ();]

&

SS

* ITUTE™
TICAL

BOTICS

Functions to Move and Stop

Create commands run UNTIL a different motor command is

received
create_drive_direct (left_speed,ri ht_spfed);
7 |
Left motor/wheel Speed in right motor/wheel iﬁp;jgelsond
mm/second

create_drive_direct (100,100); //moves forward at 100mm/sec
create_drive_direct (100,200); //create will turn left

create_drive_direct (200,100); //create will turn right

*WARNING maximum speed for the Create motors is 1000mm/second = 1 meter
(~3feet)/second. It will jump off a table in a second! Use something like 200
for the speed (moderate speed) until teams get the hang of this

create_stop (); // stops the motors

Explain using comments

You can use a flow chart and then translate that
Into comments.

Using //comments as pseudocode is a great way
to start.

If you forget which functions to use, look at your
cheat sheet.

Lets make a robot move!

Write a program for your robot to move
forward for 2 seconds

Psuedocode (Task Analysis) =

ate_connect ();]
// 1. connect to create L

2 . D r"| ve 'FO rwa r-d [Drive Forward 2 sec]
//

// 2 n Pause prlog rlam -ForI 2 SeCOndS [Turn Motors off stop create]
to give the robot time to move M)

// 3. stop the motors/create
// 4. disconnect from create

¢

Activity 3 Solution

i Created on Thu October 10 2013

{

| Notice the create connect first

int main() e Lthing right after the int main __ |
create_connect (), Mioves Both motors Torward s~~~ :
create drive direct (100, 100); " 100mm/second (should go straight)____L
msleep (2000); Snds gV The Tobor
i | N —— :
e
return (; “\\ S — ,

Create Driving Hints

Remember your # line, positive numbers go forward and negative numbers go backwards.

The Create is very fast, at 1000mm/sec { Reverse Forward
< | | | |]]] :)

It can get away from students quickly T 1
— The Create is heavy and can produce 5-4-3-2-1012345
lots of inertia/momentum (keep this in mind
while trying to get precise distances)

Driving Straight- it is not easy to drive a robot in a straight line.
* Motors are not exactly the same
* The tires may not be aligned well
e One tire has more resistance, etc.
You can adjust this by slowing down and speeding up the motors.

Making Turns
 Have one wheel go faster or slower than the other

 Have one wheel move while the other ones is stopped (friction is less of a factor
when both wheels are moving)

 Have one wheel move forward while the other is moving backwards

LET’S MOVE! Materials/Supplies

1. You need a large surface to run the robot on

e Use the floor, a piece of white or light colored foam or poster board or a vinyl
or paper mat as a robot testing track

O You need an area marked as the starting line (a piece of black tape works
well or you can mark it with a black marker)

2. You need an object to navigate to
e Can of soda, foam block, whiteboard eraser, etc. will work
3. A measuring device and a timer will be useful

Soda Can

Starting line (Tape/Marker) i

LET’S MOVE!

Activity/mini contests

Using the simple motor function motor() ; and msleep();
you can have the students work on fun challenges.

These activities can all be completed using hard coding (“dead
reckoning”) and simple motor control functions without the use
of any sensors. This is a good place to start and will teach the
students how hard it is to be consistent using dead reckoning.

e This is a good time to bring up controlling variables when
they set up their robot- is it the same every time? How
could you make it the same (using a jig or ruler to control
how they set it at the starting line)

Once they have the skills down of forward, backwards, turn and
stop, we can move on and start adding sensors and decision
making into the programs.

N

ITUTE”'“
PRACTICAL
ROBOTICS

// Touch the Can

Robots must start on or behind the starting mark and move to the object
with the goal of touching the object in the shortest amount of time

Extensions
e Move the can to various distances
e Make the object smaller and harder to navigate to

e Math- have them measure the distance to the object and time the
robot and then calculate rate/speed

O Speed = Distance/Time

Starting line Starting line
Soda Can Soda Can

———> i @

Closest to the Can

Robots must start on or behind the starting mark and move to the object
with the goal of stopping as close to the can as possible without touching it.

e If they touch the can they must start over at the starting line

e Use rulers to measure the distance stopped from the can- make a data
table

* You can use a sheet of paper passed between the robot and can to
determine if it is touching

* You can limit the number of attempts and take the best run or have them
average several runs or add the distances together for a grand total

2. Move the can to various distances and locations

Starting line Starting line
Soda Can Soda Can

. 0

“Go Home”

A variation on touch the can and closest to the can.

Closest to/touch the Can and

After stopping closest/touching the can, back the robot up until
touching the starting line
 Move the can to various distances

Starting line

Soda Can

Starting line

Soda Can

0 B

Starting line

Circle the Can and
“Go Home”

1. Brings in the concept of turning

If you touch the can you must start over

The quickest trip is the winner

Move the can to various distances

Make them go clockwise and then counter clockwise

Starting line
Syd’a Gan
Y \
|
<= - _ /

Circle the Can(s) and

“Go Home”

Variation on Circle the Can

1. Have them make a figure 8 around two objects
2. Barrel Race (have them go around three cans)

P
\

Starting line s—~ Starting link N
- * Soda Car)‘ \ Soda Can
/ 1 1 J - \l

/ n 1 I YR
- I I | NN X
! \\ I/ '/ \ g

’ -7 I

o= = \ I

S -—

// Park in the Garage

1. Robots must start on or behind the starting mark and park in
the garage (box or tape outline on board)
e Start with the garage straight across from the starting line

O Garage can be roomy and then make it a tight fit

O If they touch the garage they must start over at the starting line
e If they touch the garage they must start over at the starting line
e Move the garage to various distances and locations

Starting line

Garage

Starting line

I N .- »
1: Garage

Park in the garage and

Miss the Bicycle

“Park in the Garage” variation
O Place an object(s) between the starting line and garage

Starting line
Garage
i Starting line
_~s\ ‘,> i
N P
\\~~———,‘
\\N..—”~‘

/ Walk the Line

Brings in the concept of driving in a straight line

* Robot must move without touching the line (easiest to hardest below)
O You can use one line and have the robot move down the side without touching it
e Make this a time trial-quickest time without touching (faster is harder to control)
0 You can make a lane and have the robot drive down it without touching either side.
* Increase difficulty by making the lane narrower

O You can use one line and have the robot straddle it with the goal of running the full
length without either wheel touching the line

@ S

@----»

_@} s

Variations on Walk the Line

Same as before only have them stop and go backwards without touching the
line as well

e Add astarting line to begin and a finish line the robot must touch before
backing up

a)

Variations on Walk the Line-
Jousting!

Robots on opposite sides of the line move towards each other and try to
knock object off of other robot

O Use whatever object is handy
Engineering Point-

Have the students engineer how they attach their lance (new unsharpened
pencils work well) to their robot

----»

é----

Race Track

Brings in the concept of controlled driving

Robot must move within the lane completing the course

* Make this a time trial the fastest to complete the course with no errors

0 If you touch the line then you have to start over and the clock keeps running
* You can use a much larger track if desired (taped lanes on the classroom floor work well)
* You can use different lane setups

0 The tighter and more numerous the turns the more difficult it is
* Extension- once finished, make them stop and back up all the way to the start

@l)?)

,——————~___’
- -

\
|

—y

Moving the Create with

create_drive_straight(); AND create_spin_block();

Goals

* To reinforce the concept of a function

* To learn and use the functions for connecting to and moving the Create
Preparation

* You will need a charged Create and Link + the serial cable to connect them
* You will need computers with the KISS IDE

* You will need the USB download cable

Activity

Follow the slides to make the robot move

Activity 3

Lets make a robot move!

Use the Create with a Link controller in the cargo bay connected
with a serial cable

Launch the KISS IDE

ﬁ KISS IDE icon

Start the KISS IDE by clicking on its icon to get
the welcome screen

Click on the “New File” icon and

and choose](ve C, “Hello, World!” template
\-" 0 ok Templates

WEIcome to KI Pl%electatempiate:

o

v = iles Please select a template or template
Header File pack to the left. A description of that
item will appear here.
& Hello, World!
¥ || C++ Files
0+ Hello, World!

Remove Template Pack | Cancel | [L|

Select Target

e A Target Selection window will appear

e Pick “USB Target” and the C program template will come up

Select the target youWish to communicate with:

1 A 5
L s !
Nﬂ Tafget]fdev ,Irt{'f U.Sbmﬂde | i KIPR's Instructional Software System - No Tar et
| File Edit | Source Target Developer Help
:“ | File ! Project | | Open | || Copy lCut G_'-Pastr |IS§Compﬂe W Download = Run
| StrtPage *united | w
|
i // Created on Thu January 10 Z013
|
i int main()
i {
i printf("Hello, World!\n");
i return 0;
i }
|
|
|
|
|
i
Show targets communicating over: ' | All Interfaces =

|._I;"I-AEIIT-| |-_R§E§ﬂ_.| || Show Additional Information | Cancel | i__rjk_'l

The C Template: Hello, World!

i KIPR's Instructional Software System - No Target
File Edrtlﬂm.rce Target Developer Help
|| | IFle " iProject | Open || |Copy o Cut [{"Paste | % Comple WP Download = Run

StartPage *Untitled |

i
i
[
Lad

// Created on Thu January 10

int main{()

{
printf ("Hello, World!\an");
return 0O;

We will use this
template every

-l —

O-CD hamea™
KIPR LINK

CHARGER ONLY

—na e

We use the serial cable to plug into the LINK TTL
Serial plug

NOTICE the red mark on the plug (left side) this
corresponds to the red wire in the serial cable

=

LINK serial plug

Power connector Correctly plugged in

Create connector

Plugging serial cable into Create

We use the Create connector (round) end

LINK serial plug

Create connector Receptacle may have a cover that
you can pop off to access

The plug is keyed, make sure
you line it up correctly before

plugging it in

Functions to Move and Stop

Create commands run UNTIL a different motor command is
received

create_drive_straight() (200);

Speed in mm/second for BOTH right and left wheels

create_drive_straight (200); //moves forward at 200mm/sec

*WARNING maximum speed for the Create motors is 1000mm/second = 1 meter
(~3feet)/second. It will jump off a table in a second! Use something like 200
for the speed (moderate speed) until teams get the hang of this

Explain using comments

You can use a flow chart and then translate that
Into comments.

Using //comments as pseudocode is a great way
to start.

If you forget which functions to use, look at your
cheat sheet.

Lets make a robot move!

Write a program for your robot to move

forward for 2 seconds 9
Psuedocode (Task Analysis) o
// 1. connect to create [Dmiii;c]

2. Drive straight at 500mm/sec
// g / B

// 3 m Pause prlog rlam -ForI 2 SeCOndS [Turn Motors off stop create]
to give the robot time to move)

// 4. stop the motors/create
// 5. disconnect from create

]

¢

Activity Solution \

{f Created on Wed Octoper 16 2013

int main()

{
create_connect(); // conect L1nk to create
create_drive_straight(266);//drive both motors at 580mn/second
msleep (2000); // Pouse program for 2 Seconds to glve robot time to move
create_stop(); // stop create
cregte_disconnect()://disconnect from create
return 8;

Function toTurn/Spin

Create commands run UNTIL a different motor command is
received

Speed in mm/second for BOTH right and left wheels

create_drive_straight (200); //moves forward at 200mm/sec

*WARNING maximum speed for the Create motors is 1000mm/second = 1 meter
(~3feet)/second. It will jump off a table in a second! Use something like 200
for the speed (moderate speed) until teams get the hang of this

Function to Spin your robot

Create commands run UNTIL a different motor command is
received

create _spin_block() (}OO : QQ) ;

Degree of spin

Speed in mm/second of the spin (this will turn counterclockwise)

create_spin_block() (200,90);//spins 90° at 200mm/sec

*WARNING maximum speed for the Create motors is 1000mm/second = 1 meter
(~3feet)/second. It will jump off a table in a second! Use something like 200
for the speed (moderate speed) until you get the hang of this

Lets make a robot draw a square!

Write a program for your robot to move
forward for 2 seconds and then make a 90°
turn

Psuedocode (Task Analysis)

// 1. connect to create

// 2. Drive straight at 200mm/sec

// 3. Pause program for 2 seconds to
give the robot time to move

// 4. Turn counter clockwise 909

// 5. Stop motors

// 5. disconnect from create

Activity Solution \

{{ Created on Wed October 16 2013

int main()
{
create_connect(); // conect link to create
create_drive_straight(200);//drive both motors ot 508mm/second
msleep (2000); // Pause program for Z seconds to give robot time to move
create_spin_block(200, 90); // spin/turn counter clockwise 90 degrees ot Z0Bm/second
create_stop(); // stop create
create_disconnect();//disconnect from create
return @

Create Driving Hints

Remember your # line, positive numbers go forward and negative numbers go backwards.

The Create is very fast, at 1000mm/sec { Reverse Forward
< | | | |]]] :)

It can get away from students quickly T 1
— The Create is heavy and can produce 5-4-3-2-1012345
lots of inertia/momentum (keep this in mind
while trying to get precise distances)

Driving Straight- it is not easy to drive a robot in a straight line.
* Motors are not exactly the same
* The tires may not be aligned well
e One tire has more resistance, etc.
You can adjust this by slowing down and speeding up the motors.

Making Turns
 Have one wheel go faster or slower than the other

 Have one wheel move while the other ones is stopped (friction is less of a factor
when both wheels are moving)

 Have one wheel move forward while the other is moving backwards

LET’S MOVE! Materials/Supplies

1. You need a large surface to run the robot on

e Use the floor, a piece of white or light colored foam or poster board or a vinyl
or paper mat as a robot testing track

O You need an area marked as the starting line (a piece of black tape works
well or you can mark it with a black marker)

2. You need an object to navigate to
e Can of soda, foam block, whiteboard eraser, etc. will work
3. A measuring device and a timer will be useful

Soda Can

Starting line (Tape/Marker) i

LET’S MOVE!

Activity/mini contests

Using the simple motor function motor() ; and msleep();
you can have the students work on fun challenges.

These activities can all be completed using hard coding (“dead
reckoning”) and simple motor control functions without the use
of any sensors. This is a good place to start and will teach the
students how hard it is to be consistent using dead reckoning.

e This is a good time to bring up controlling variables when
they set up their robot- is it the same every time? How
could you make it the same (using a jig or ruler to control
how they set it at the starting line)

Once they have the skills down of forward, backwards, stop, turn
then we can move on and start adding sensors and decision
making into the programs.

N

% [TUTE™
PRACTICAL
ROBOTICS

// Touch the Can

Robots must start on or behind the starting mark and move to the object
with the goal of touching the object in the shortest amount of time

Extensions
e Move the can to various distances
e Make the object smaller and harder to navigate to

e Math- have them measure the distance to the object and time the
robot and then calculate rate/speed

O Speed = Distance/Time

Starting line Starting line
Soda Can Soda Can

———> i @

Closest to the Can

Robots must start on or behind the starting mark and move to the object
with the goal of stopping as close to the can as possible without touching it.

e If they touch the can they must start over at the starting line

e Use rulers to measure the distance stopped from the can- make a data
table

* You can use a sheet of paper passed between the robot and can to
determine if it is touching

* You can limit the number of attempts and take the best run or have them
average several runs or add the distances together for a grand total

2. Move the can to various distances and locations

Starting line Starting line
Soda Can Soda Can

| a8

“Go Home”

A variation on touch the can and closest to the can.

Closest to/touch the Can and

After stopping closest/touching the can, back the robot up until
touching the starting line
 Move the can to various distances

Starting line

Soda Can

Starting line

Soda Can

0 B

Starting line

Circle the Can and
“Go Home”

1. Brings in the concept of turning

If you touch the can you must start over

The quickest trip is the winner

Move the can to various distances

Make them go clockwise and then counter clockwise

Starting line
Syd’a Gan
Y \
|
<= - _ /

Circle the Can(s) and

“Go Home”

Variation on Circle the Can

1. Have them make a figure 8 around two objects
2. Barrel Race (have them go around three cans)

-~
Starting line s—~ Starting link \\
- * Soda Car)‘ \

/) | \ J - I
/ 1 | e Y
. I I\ 1 €«-7_ -V I'
; >

! \\ I/I\ \~
4 ~—_7 |
-_— o
< s I

// Park in the Garage

1. Robots must start on or behind the starting mark and park in
the garage (box or tape outline on board)
e Start with the garage straight across from the starting line

O Garage can be roomy and then make it a tight fit

O If they touch the garage they must start over at the starting line
e If they touch the garage they must start over at the starting line
e Move the garage to various distances and locations

Starting line

Garage

Starting line

I N .- »
1: Garage

Park in the garage and

Miss the Bicycle

“Park in the Garage” variation
O Place an object(s) between the starting line and garage

Starting line
Garage
i Starting line
_~s\ ‘,> i
N P
\\~~———,‘
\\N..—”~‘

/ Walk the Line

Brings in the concept of driving in a straight line

* Robot must move without touching the line (easiest to hardest below)
O You can use one line and have the robot move down the side without touching it
e Make this a time trial-quickest time without touching (faster is harder to control)
0 You can make a lane and have the robot drive down it without touching either side.
* Increase difficulty by making the lane narrower

O You can use one line and have the robot straddle it with the goal of running the full
length without either wheel touching the line

@ S

@----»

_@} s

Variations on Walk the Line

Same as before only have them stop and go backwards without touching the
line as well

e Add astarting line to begin and a finish line the robot must touch before
backing up

a)

Variations on Walk the Line-
Jousting!

Robots on opposite sides of the line move towards each other and try to
knock object off of other robot

O Use whatever object is handy
Engineering Point-

Have the students engineer how they attach their lance (new unsharpened
pencils work well) to their robot

----»

é----

Race Track

Brings in the concept of controlled driving

Robot must move within the lane completing the course

* Make this a time trial the fastest to complete the course with no errors

0 If you touch the line then you have to start over and the clock keeps running
* You can use a much larger track if desired (taped lanes on the classroom floor work well)
* You can use different lane setups

0 The tighter and more numerous the turns the more difficult it is
* Extension- once finished, make them stop and back up all the way to the start

@l)?)

,——————~___’
- -

\
|

—y

Using sensors with the Create

Goals

* To learn and use the functions for connecting to and moving the Create

* To learn the functions used to access sensors built into the Create

* To learn how to record distance traveled and angle turned and get the value

e To use real distance measurement to compare to sensor measurement for distance
traveled and angle turned.

Preparation

* You will need a charged Create and Link + the serial cable to connect them

* You will need computers with the KISS IDE

* You will need the USB download cable

* A meter stick and protractor or other measuring device

Activity

Follow the slides

Activity 3

Lets use the Create’s built-in sensors!

Use the Create with a Link controller in the cargo bay connected
with a serial cable

Launch the KISS IDE

ﬁ KISS IDE icon

Start the KISS IDE by clicking on its icon to get
the welcome screen

Click on the “New File” icon and

and choose](ve C, “Hello, World!” template
\-" 0 ok Templates

WEIcome to KI Pl%electatempiate:

o

v = iles Please select a template or template
Header File pack to the left. A description of that
item will appear here.
& Hello, World!
¥ || C++ Files
0+ Hello, World!

Remove Template Pack | Cancel | [L|

Select Target

e A Target Selection window will appear

e Pick “USB Target” and the C program template will come up

Select the target youWish to communicate with:

1 A 5
L s !
Nﬂ Tafget]fdev ,Irt{'f U.Sbmﬂde | i KIPR's Instructional Software System - No Tar et
| File Edit | Source Target Developer Help
:“ | File ! Project | | Open | || Copy lCut G_'-Pastr |IS§Compﬂe W Download = Run
| StrtPage *united | w
|
i // Created on Thu January 10 Z013
|
i int main()
i {
i printf("Hello, World!\n");
i return 0;
i }
|
|
|
|
|
i
Show targets communicating over: ' | All Interfaces =

|._I;"I-AEIIT-| |-_R§E§ﬂ_.| || Show Additional Information | Cancel | i__rjk_'l

The C Template: Hello, World!

i KIPR's Instructional Software System - No Target
File Edrtlﬂm.rce Target Developer Help
|| | IFle " iProject | Open || |Copy o Cut [{"Paste | % Comple WP Download = Run

StartPage *Untitled |

i
i
[
Lad

// Created on Thu January 10

int main{()

{
printf ("Hello, World!\an");
return 0O;

We will use this
template every

-l —

O-CD hamea™
KIPR LINK

CHARGER ONLY

—na e

We use the serial cable to plug into the Link TTL
Serial plug

NOTICE the red mark on the plug (left side) this
corresponds to the red wire in the serial cable

=

Link serial plug

Power connector Correctly plugged in

Create connector

Plugging serial cable into Create

We use the Create connector (round) end

Link serial plug

Create connector Receptacle may have a cover that
you can pop off to access

The plug is keyed, make sure
you line it up correctly before

plugging it in

// Function to get distance traveled

The Create has a built-in sensor that measures distance traveled in mm

— The set_create_distance () ; function allows you to reset the
counter

The function get_create_distance () ; returnsthe recorded
value (distance traveled in mm)

set_create_distance (0) ;//tels the Link to reset the distance to 0

get_create_distance() ;// gets the distance traveled in mm

How accurate is the

get create distance (); ?
Write a program for your robot to move forward for 1m = 100cm
= 1000 mm

Psuedocode (Task Analysis)

// 1. connect to create
// 2. Reset create distance traveled to 0O

2
// 3. Drive forward @ 500mm/second
4

// Pause program for 2 seconds to give
the robot time to move 1000mm
//

. stop the motors/create

// 6. print get_create_distance (); to
screen

// 7. disconnect from create

|

. W Greated on Thu Cctober 10 2013

Activity Solution \

it main{)

A

crete_connect):

set create distance (0); / resets distance traveled 1o start at(

create_drive_direct (300, 500); /drive forward at 500 mm per second

malesp (2000); / sleap for 2 seconds to et the robot drive 2 sec X S00mm/se = 1000mm or 1meter
create_stop(; /stop the create motors

prin{%\n’, get_create distance (), / prints the distance raveled 1o the screen

create disconnect (): disconnects the link from the create

return

Checking the distance traveled value \
returned with an actual measu rement
If you place the Create at a starting line and run the program in a perfect world it
should go 1000mm or 1 m, BUT this isn’t a perfect world

In reality it will go something less (friction, motors are different etc)

* Inthe previous example our Create printed out it had gone 848mm
e The actual physical measurement with a meter stick was 870 mm

Both were ~ 140mm less than the predicted 1000mm, but you can figure out the differences and
account for this when programming the robot (a data table with conversions would be helpful)

. Actual Distance 843 mm
Predicted Distance @ | | Ko e -

500mm/second for 2 seconds
______________________ <
1000 mm or 1 m

Predicted Distance 1000 mm

Function to get angle turned

The Create has a built-in sensor that measures angle turned in degrees

— The set_create_total_angle () ; function allows you to reset the
counter

The function get_create_total_angle () ; returnsthe recorded
value (angle turned in degrees)

set_cC r'eate_tOta1 _ang1 e (O) s //tells the Link to reset the angle turned to 0

QEt_C r'eate_tota1 _ang1 e () s // gets the angle turned in degrees

How accurate is the
get create total angle(); ?
Write a program for your robot to turn 180 degrees

Psuedocode (Task Analysis)

// 1. connect to create

// 2. Reset create total angle turned to O

// 3. Turn left or counter clockwise
4

// Pause program for 2 seconds to give
the robot time to turn
//

. stop the motors/create

// 6. print get_create_total_angle (); to
screen

// 7. disconnect from create

|

Activity Solution

I Created on Thu October 10 2013

int main{)
{
create_connect ()
sel_create_total_angle (C); / resets distance raveled to start at 0
create drive direct (<200, 200 fhurn left-countar clockwise
maleap (2000 / sleep for 2 seconds 1o give the robot time to tum
create_stop{); /stop the create motars
printi({ i\, get_create_total_angle (); / prints the tolal angle tumed to the screen
create disconnact (); Mdisconnects the link from the create
return ;

Checking the total angle turned valu€ \
returned with an actual measu rement
If you place the Create on a starting line and run the program in a perfect world
it should turn ~180 degrees BUT this often isn’t a perfect world

In reality it may go something less (friction, motors are different etc) or more

* Inthe previous example our Create printed out it had gone 180 degrees
* The actual physical measurement with a protractor was 182 degrees

With a little work, you can figure out the differences and account for this when programming the
robot (a data table with conversions would be helpful)

* You many need to put a mark on the create so you know where to start (it is hard to keep this
consistent without a mark)

Using the Create bump sensors

Goals
* To learn and use the functions for connecting to and moving the Create
* To learn the functions used to access sensors built into the Create
* To learn how to use the Create’s bump sensors
Preparation
* You will need a charged Create and Link + the serial cable to connect them
* You will need computers with the KISS IDE
* You will need the USB download cable
* You need a solid object for the create to bump into
* In Botball teams use the pvc around the edge of the game board to trigger the
Create’s bump sensors
Activity
Follow the slides

Activity 3

Lets use the Create’s built-in sensors!

Use the Create with a Link controller in the cargo bay connected
with a serial cable

Launch the KISS IDE

ﬁ KISS IDE icon

Start the KISS IDE by clicking on its icon to get
the welcome screen

Click on the “New File” icon and

and choose](ve C, “Hello, World!” template
\-" 0 ok Templates

WEIcome to KI Pl%electatempiate:

o

v = iles Please select a template or template
Header File pack to the left. A description of that
item will appear here.
& Hello, World!
¥ || C++ Files
0+ Hello, World!

Remove Template Pack | Cancel | [L|

Select Target

e A Target Selection window will appear

e Pick “USB Target” and the C program template will come up

Select the target youWish to communicate with:

1 A 5
L s !
Nﬂ Tafget]fdev ,Irt{'f U.Sbmﬂde | i KIPR's Instructional Software System - No Tar et
| File Edit | Source Target Developer Help
:“ | File ! Project | | Open | || Copy lCut G_'-Pastr |IS§Compﬂe W Download = Run
| StrtPage *united | w
|
i // Created on Thu January 10 Z013
|
i int main()
i {
i printf("Hello, World!\n");
i return 0;
i }
|
|
|
|
|
i
Show targets communicating over: ' | All Interfaces =

|._I;"I-AEIIT-| |-_R§E§ﬂ_.| || Show Additional Information | Cancel | i__rjk_'l

The C Template: Hello, World!

i KIPR's Instructional Software System - No Target
File Edrtlﬂm.rce Target Developer Help
|| | IFle " iProject | Open || |Copy o Cut [{"Paste | % Comple WP Download = Run

StartPage *Untitled |

i
i
[
Lad

// Created on Thu January 10

int main{()

{
printf ("Hello, World!\an");
return 0O;

We will use this
template every

-l —

O-CD hamea™
KIPR LINK

CHARGER ONLY

—na e

We use the serial cable to plug into the Link TTL
Serial plug

NOTICE the red mark on the plug (left side) this
corresponds to the red wire in the serial cable

=

Link serial plug

Power connector Correctly plugged in

Create connector

Plugging serial cable into Create

We use the Create connector (round) end

Link serial plug

Create connector Receptacle may have a cover that
you can pop off to access

The plug is keyed, make sure
you line it up correctly before

plugging it in

Function to get Create sensor values

By now you should be familiar with the
get_create_total_angle (); and
get_create_distance (); functions

The Create has other built-in sensors you can access
with the get_create_....();

cwdrop(
| rfc1iffO 1fc1iffQ) |
1bump()|
.\

%ttery_capac‘ity()@ _\.\f\ 1cli ff() I

right and left bump

(digital touch sensor)

4 cliff sensors

I cwdrop() I

[rfc1iffO |

I rbump ()

[rc1iffO

I r-wdr'op()

[1fc1iffO |

Tbump O |

1c1iffQ) |

battery_capac1 tyQ @
\ \

’,7

0

Lr'ﬂmn

|——| Twdrop () I
D
-

Using a bump sensor?

Write a program for your robot to move forward until the
right bump sensor is pressed

Psuedocode (Task Analysis)

// 1.

. Check right bump sensor

. Drive forward @ 300mm/second

. Stop the motors/create when bumped
. print “I hit something”

. disconnect from create

//
//
//
//
//

N O B~ W N

connect to cCreate

Activity Solution

il Created on Thu October 10 2013

Int main()

{
create_connact ; // connect the Link to the Create
while (get create_rbump () == 0) J check the right bump sensor
{1t not hit
create_drve direct (300, 300); fmove forward
Mihit
create_stop(); /fstop the creale motors
printi(’l hit something\n’); / prints the total angle fumed to the screen
create_disconnect (); fdisconnects the link from the create
return ;

	0.9F Robot Introduction
	1.0F Introductory Kit Overview
	1.1F DemoBot Building Guide
	1.2F Link Overview
	1.3F Introduction & Flow Charts
	1.4F Introduction to Programming Languages and KISS IDE
	1.5F Introduction to Functions & HELP
	1.6F First C Program _Hello World_msleep
	1.7F Using Motor() to move your robot
	1.8F using mav() mrp()to move your robot 1.0
	1.9F writing your own functions
	2.0F Programming your robot to run for a set amount of time
	2.1F First Sensor Start with a light
	2.2F Using Servos
	2.3F Engineering Design Activities
	2.4F Decision making and Sensors
	2.5F if statements and following lines
	2.6F Measuring Distance using the ET
	2.7F Using the Camera
	2.8F Create_ Overview
	2.9F Moving the Create
	3.0F Moving the Create Straight and Spin
	3.1F Create_Distance_Angle
	3.2F Create_Bump_Sensors

