
Goals

• To help students understand what a robot is

• To understand the basic components needed for a robot
o Mechanical Structure, Effectors, Power, Computer, Sensors, Computer Program

• To understand the types of tasks and jobs robots perform

• To learn terms and vocabulary related to robots

Preparation

Project slides up on a board or provide print outs for each group

Activity

Follow the slides and complete the activities

What is a Robot

What is a Robot? Activity

Objectives:

• What is a robot?

• What do you need to build and control a

robot?

• What types of tasks/jobs do robots perform?

• What terms do we need to know?

What robots do we use everyday?

• Create a poster/list that describes what robots

we use everyday, and why these are robots

• Share out!

• Compile a list of the robots

?

What makes a robot a robot?

4

List 5 or 6 words or phrases that

you think make a robot a robot:

5

1. Draw a “+” if you agree

2. Add one more component

3. Toss

Commit and Toss

• Structure

• Effectors

• Sensors

• Power

• Computation

• Information

Can we add to it?

Humans vs. Robot Subsystems

People Robots

Bones Mechanical Structure

Muscles Effectors

Senses Sensors

Digestion/Respiration Power

Brain Computer

Knowledge Computer Program

Structure

Robot Structure

• Provides support to the
robot-like your skeleton

• Joints in structure
normally have effectors
(like muscles) attached

• Holds sensors in position

Effectors

• Used to change the state of the robot itself

• Used to change the state of the world

• Examples:

o Motors, thrusters, arms, or legs

o Voice synthesizers, buzzers, and lights

Sensors

Proprioceptive sensors
• Report on the current state of

the robot- you know you are
sitting down even with your
eyes closed

External sensors
• Report on the current state of

the environment the robot is in

o Light sensors, range
sensors, touch sensors, etc.

Power (Energy)

• Power Source
o Batteries, solar panels

o Springs, hydraulics, pneumatics

o Nuclear reactor

• Power Distribution
o Wires

• Power management
o Regulators

o Converters

Computation

• Used to interpret sensor
values; perception

• Used to generate proper
effector commands

• Used to project effects
and plan actions

Information

• Internal Information
o How to interpret sensor

values

o How to generate effector
commands

o Internal state & history

• External Information
o World, user & predictive

models

• Program
o Determines robot actions

o Forms robot plans

o Debugging - introspection

Introductory Kit Overview

http://botballstore.org/product/link-Introductory-kit

#1 KIPR Link Controller

#1 KIPR Link Power Adapter

#1 KIPR Link Mini USB Cable

#1 Botball Screwdriver

#1 11/32 Wrench

#1 1/4 Wrench

#1 Introductory LEGO bag

#2 Motors - SG-5010 Standard Motor

#2 SG-5010 Servos

#1 Bag of Screws & Stand-offs

#1 Bag of Push Rivets

#1 Bag of Brass Screws

KIPR Metal Parts to include:

#1 Metal Ball Caster

#2 Motor Brackets

#1 Chassis

#1 Angle Bracket

#2 Servo Round Horn, #1 Long Horn

Sensors to include:

#1 Light Sensor

#1 Small Touch

#1 Large Touch

#1 Long Lever Sensor

#1 ET Rangefinder

#2 Small IR

You can access the kit components on

our online store:

Introductory Kit Scavenger Hunt Activity
Goals

• Learn the kit components and be able to identify individual parts

• Be able to group parts into categories (KIPR Metal Parts, LEGO, Sensors)

• Distinguish between a motor and a servo motor

• Keep track of parts

Preparation

Place all of the kit components out on a table and have the students use:

1. A checklist (something very helpful in engineering) to identify and account

for all parts (printable example on next slide)

2. Have the students use their science/engineering/robotics notebook to make

their own checklist to account for all parts

Resources

The online KIPR store is a good resource to help with the identification of specific

kit components:

http://botballstore.org/product/link-Introductory-kit

(instructions on resource slide)

*Having a tool box or plastic bins with lids to store kit components is

helpful and keeps them from getting lost in the classroom

KIPR Metal Parts to include:

#1 Metal Ball Caster

#2 Motor Brackets

#1 Chassis

#1 Angle Bracket

#2 Servo Round Horn

#1 Long Servo Horn

Sensors to include:

#1 Light Sensor

#1 Small Touch

#1 Large Touch

#1 Long Lever Sensor

#1 ET Rangefinder

#2 Small IR

#1 KIPR Link Controller

#1 KIPR Link Power Adapter

#1 KIPR Link Mini USB Cable

#1 Botball Screwdriver

#1 11/32 Wrench

#1 1/4 Wrench

#1 Introductory LEGO bag

#2 Motors - SG-5010 Motor

#2 SG-5010 Servos

#1 Bag of Screws & Stand-offs

#1 Bag of Push Rivets

#1 Bag of Brass Screws

Introductory Kit Checklist

www.botball.org

www.kipr.org

Online Resources-The Botball Store

Resources- If you can’t get online

KIPR Link Controller

KIPR Link Wall Charger
(ONLY use this charger with your Link)

USB – micro USB

download cable

Motor

Servo Motor

Resources- If you can’t get online continued

Large Touch Sensor

Small IR Reflectance Sensor

Long Lever Sensor
Small Touch Sensor

ET- Rangefinder sensor

USB Camera

Light Sensor

Resources- If you can’t get online continued

KMP Motor Bracket

KMP Angle Bracket
KIPR Metal Part (KMP) Chassis

LEGO Bag

KMP Round Servo Horn

KMP Long Servo Horn

Introductory Kit Scavenger Hunt
Task-
• Sort and identify all of the robot kit components and use a checklist to make

sure you have everything

OR

• Generate your own checklist using your notebook and sort and identify all of

the robot kit components

THEN

• Use a Venn diagram to compare and contrast motors and servo motors

• Be the expert- each team member must describe and identify a kit component

explaining how they identified it until all items have been correctly identified

Motors Servo Motors

Building the DemoBot

Goals

• To get a robot built to complete the programming activities

• To learn to follow directions/schematics to construct the robot

Preparation

• Make sure if your robot is NOT already built to complete the Introductory Kit Overview

Activity

• Using the guide, have the student build the DemoBot

• The teacher can build the DemoBot ahead of time if desired

*HINT- The hardest part is starting the screws through the metal servo horn to attach the

tire. Students may need help starting the screws.

Activity

• Using the slides, build the DemoBot

KIPR DemoBot

From the bag with two KIPR Metal Pieces (KMP) servo

horns and two KMP servo arms remove the two round

horns and four machine screws

Using the screwdriver start the machine screws through

two opposite holes in the metal round servo horn

(It may be hard to get them started- teacher may need to

help)

You will need two tires on rims

The KMP round servo horn with the two screws will go

onto the side of the rim that is recessed the least amount

Using the nuts (from the bag with the KMP servo horns)

and a screwdriver, attach the KMP round servo horn to the

rim

You will attach these to the motors later in the build

You will need two motors and the KMP Chassis

The kit has two (2) motors and two servos. You can

distinguish motors from servos by the wiring. Motors have

a double grey wire and servos have a triple red, orange,

brown wire.

Insert the motors into the chassisInsert the motors into the chassis

Make sure and place the white servo spindle towards

(closer to) the shorter side of the chassis

Repeat for the other side

Servo Spindle

Short SideLong Side

Using two plastic pop rivets attach the motors to the

chassis and repeat the process on the other side with the

other motor.

For a more stable connection you can use the short bolts

and nuts instead of pop rivets.

Using the wheels you assembled earlier, push the round Using the wheels you assembled earlier, push the round

metal servo horn onto the servo spindle

Using the screwdriver, secure the wheel in place with a

long screw (found in the same bag with the KMP round and arm servo

horns)

Repeat for other side

Take one (1) 3-Hole LEGO piece.

This shows the position that it will be mounted in the next

few slides.

Get the “Pololu Ball Caster”.

The bag will contain a ball bearing caster, 2 short & 2 long

bolts with nuts and two plastic washers- one thick and one

thin. The washer in this slide is the THICK one and is shown

here for position only (it will be attached in later slides).

Take the ball bearing caster and the 2 long bolts from the

“Pololu Ball Caster” bag. Pop the ball out of the caster.

Leave the ball out for now. Put the bolts through the caster,

the thick washer and the 3 hole LEGO as shown. The

assembly is shown here for position only (it will be

attached in later slides).

Place everything in place (3 Hole LEGO, Thick Washer, Ball

Bearing Caster with 2 long bolts) into position. You will have

to hold this in place until it is secured in the next slide. You

can have a partner help or you can rest the caster assembly

on the table so that it stays in place.

Take the thin washer from “Pololu Ball Caster” bag and

place over bolts.

Take nuts out of “Pololu Ball Caster” bag and secure caster

assembly to the chassis. Tighten with the screwdriver from

the other side.

Pop the ball back into the caster.

There are two options for attaching your KIPR Link to the

chassis. Option one attaches with push rivets and option

two (slides at the end of the presentation) allows you to

simply set your KIPR Link on the chassis so that you can

quickly change out the KIPR Link if you need to.

Option one- Set your

KIPR Link onto the

chassis in the

orientation shown.

Power switch located

opposite from the ball

bearing caster. Leave

three holes uncovered

on the chassis on the

caster side.

CAREFULLY turn the chassis/KIPR Link upside down.

REMEMBER it is NOT attached and will fall. You can hold it

with your hand until we attach it in the next step or

CAREFULLY set it upside down on the table.

Take Four (4) plastic pop rivets, identical to the ones you

used to attach the motors to the chassis and attach the

KIPR Link to the chassis by lining up the holes (as shown)

and pushing them in until they lock. Once you have the

KIPR Link locked into place you can turn your robot over

and let it rest on the wheels and caster.

Take a KMP (KIPR Metal Part) Angle Bracket piece out of the

“KIPR Metal Pieces Box”. You can identify it by the hole

spacings that look like a smiley face. It is shown here for

identification and will be attached soon.

This is to show position only, it will be attached with bolts

and nuts in the next slide. NOTICE the alignment on the

chassis and the holes in the angle bracket that will be used.

IT WILL NOT be straight when properly aligned, but this is

okay.

Place two (2) short black bolts as shown. They

the next step.

Place two (2) short black bolts as shown. They are in a

ziplock bag with wrenches and offsets in the

paper insert labeled “Electronics Kit”. There are 3 lengths

of bolts (short, medium and long) and two types of nuts

(locking with white nylon and locking with attached lock

washer). You will need the locking with lock washer nuts in

the next step.

Using the lock nuts attach the angle bracket to the chassis

and tighten using the wrench and screwdriver. This is shown

upside down for clarity. You do not have to turn your robot

upside down to attach the nuts.

Identify your KMP (KIPR Metal Part) Motor Bracket.

It is shown here for identification and will be attached in

the next slide.

Attach the motor bracket to the chassis using the short

bolts and lock washer nuts. Tighten with the wrench and

screwdriver.

You will need one (1) servo.

You can distinguish servos from motors by the wiring.

Motors have a double grey wire and servos have a triple

red, orange, brown wire. You will also need one small

round servo horn for the next step.

Place the round servo horn onto the servo just like you

placed the servo horn onto the motor and secure with the

small silver servo horn screw. Tighten with the screwdriver.

You can attach the servo horn to the servo before

attaching the servo to the servo bracket with two (2)

plastic pop rivets. Secure the servo to the mount by

pushing the pop rivets in until they snap into place.

Pop Rivets

You will need one (1) 11 hole LEGO piece

This will be attached to the servo horn in the next step it is

shown here for identification ONLY.

BEFORE attaching the LEGO to the servo horn, ROTATE the

servo horn clockwise (turn towards KIPR Link) until it

stops. Then ORIENT the LEGO piece so that it is pointing

straight up/VERTICAL(not shown in this picture).

You will need two (2) of the longer silver screws found in

the servo bags and using the screwdriver attach the 11

hole LEGO piece to the servo horn. MAKE SURE the LEGO

piece is vertical.

LEGO should be vertical

(Not as depicted here)

Option 2 uses ¾ friction pins and the Lego pieces.

Remember this just keeps the KIPR Link from sliding off the

chassis and allows easy change of the KIPR Link, BUT the

KIPR Link will fall off if it is turned upside down.

Attach the LEGO pieces

to the chassis as shown
OPTION 2

Get to know your controller

KIPR Link Basic Features

GNU/Linux based operating system

Open-source robot control software

Integrated color vision system

800MHz ARMv5te processor

Spartan-6 FPGA

Integrated battery and charge system

Internal speaker

320 x 240 color touch screen

Input and Output

1 - 3 axis 10-bit accelerometer (software selectable 2/4/8g)

8 – Digital I/O ports (hardware selectable 3.3V or 5V)

8 - 3.3V (5V tolerant) 10-bit analog input ports

4 - Servo motor ports

4 - PID motors ports with full 10-bit back EMF and PID motor control

1 - 3.3V (5V tolerant) TTL serial port

2 - USB A host ports for connecting devices

1 - Micro USB port to connect to your computer

1 - Physical button

1 - IR emitter

1 - IR receiver

1 - HDMI port

You have the

KIPR LINK

Manual on the

flash drive

provided to you

You have the

KIPR LINK

Manual on the

flash drive

provided to you

Charging the KIPR Link Controller

• For charging the KIPR Link, use only the power

supply which came with your Link

o Damage to the Link from using the wrong charger is easily

detected and will void your warranty!

• The KIPR Link power pack is a lithium polymer

battery so the rules for charging a lithium battery for

any electronic device apply

o Only an adult should charge the unit

o You should NOT leave the unit unattended while charging

o Charge away from any flammable materials and in a cool,

open area

Learning about the Link Controller
Goals

• To be able to identify all of the ports on the link controller and what they are

used for

• To be able to identify the buttons and their use

• To understand the proper charging procedure (only an adult, only under

supervision at all times, not around water or flammable materials)

Preparation

Have a link controller available for students to examine along with a projection of

the resource slide with pictures of the controller OR give students a printed sheet

of the resource slide

1. Print the table in the resources for students to use to identify and then learn

the use of the items

2. Have the students use their science/engineering/robotics notebook to make

their own checklist/table to account for all ports and switches

Resources

The KIPR Link Manual (on your flash drive)

HDMI port speaker side button

2 servo

motor ports

Color touch screen

TTL serial USB 2 USB Power

power switch IR Sensor

8 analog 8 digital

sensor ports sensor ports

2 servo

motor ports

2 motor ports
2 motor ports

KEY

KEY

1 A HDMI Port J Where you plug in SERVO motors

2 B Speaker K Where you plug in motors

3 C Side Button M Where you plug in digital sensors

4 D TTL Serial L Where you plug in analog sensors

5 E USB 2 N Where you can interact with the controller

6 F USB H Used to turn the Link on and off

7 G Power B Used to play sounds

8 H Power Switch I Used to emit and receive Infrared

9 I IR Sensor E Used to download programs from the computer to the link

10, 15 J Servo Ports D Used to connect to the iRobot Create Platform

11, 14 K Motor Ports A Used to connect to a display

12 L Analog Sensor Ports G Used to charge the Link FOLLOW PROPER PROCEDURES

13 M Digital Sensor Ports C Used for human input (used in porgramming)

16 N Color Touch Screen F Used for flash drives, keyboards, mouse

#16

#8 #9

#4 #5 #6 #7

#1 #2 #3

#12 #13
#10

#11

#15

#14

A HDMI Port Where you plug in SERVO motors

B Speaker Where you plug in motors

C Side Button Where you plug in digital sensors

D TTL Serial Where you plug in analog sensors

E USB 2 Where you can interact with the controller

F USB Used to turn the Link on and off

G Power Used to play sounds

H Power Switch Used to emit and receive Infrared

I IR Sensor Used to download programs from the computer to the link

J Servo Ports Used to connect to the iRobot Create Platform

K Motor Ports Used to connect to a display

L Analog Sensor Ports Used to charge the Link FOLLOW PROPER PROCEDURES

M Digital Sensor Ports Used for human input (used in porgramming)

N Color Touch Screen Used for flash drives, keyboards, mouse

Get to know your KIPR Link
Item # goes

here

Letter in

front of Item

Know your Robot Controller

• Using a Link controller OR the print out OR a

Link controller projected on the screen use the

table provided by your teacher to identify the

items by number

• Now match the items with their proper use

(use the letter in front of the item)

Be the Robot ActivityGoals

• To help students understand the importance of specific directions

• To facilitate the student’s understanding of pre-thinking the logic of

providing directions to the “robot”

Preparation

Set up the room so that a blindfolded “robot” student can move around with out getting

hurt.

1. Arrange the room so that there are some open areas and a few obstacles.

Activity

Explain the task to be completed by the blindfolded human robot (must start here go

around the desk and stop at the white board, etc.).

• Make sure they must go around some obstacles, make a few turns and end at a

specific location, maybe back to where they started

• Blindfold the student robot or simply have the student close their eyes. Put them in

the “starting box” and have the other students provide directions to complete the task

o One student at a time should give only 1 direction at a time. For example; move

forward 3 steps, stop, turn right, stop

• Document the instructions the students provide to the “student robot”

o Use the documented instructions to write out the steps

o Using documented steps, they can analyze it for success one step at a time. This is

a great whole group activity

• Complete the Flow Chart activity, which introduces the concept of flow

charts instead of written steps

Be the Robot Activity
1. Your teacher will explain the task that your human “robot” must complete.

1. Select a volunteer student to be the human “robot”.

1. Select students who will call out instructions to the robot.

• Only one student at a time can provide directions, make sure to take turns in

the proper order

• Only one direction at a time may be provided to the “robot”

2. Run the “robot” by providing the directions and see how successful you were at

controlling the robot.

• Discuss was it easy or hard to make the robot complete the task

• Could you do this with less instructions?

3. After brainstorming ideas to make the instructions better, write the steps out one

at a time and in the proper order on the whiteboard, chalkboard or in your

notebook.

4. Select another “robot” volunteer and read the written directions one at a time to

see if they work any better.

5. Analyze for improvements in the written instructions and repeat.

6. Discuss what made for better instructions.

7. Move on to the next activity, Flowcharts!

Be the Robot Flowchart Activity
Goals

• To help students understand how to construct a flowchart

• To introduce students to the concept of decision making “logic”

• To facilitate the student’s understanding of using flowcharts to pre-think and plan the

logic of how they program their robot

• To ensure that students can read a flowchart and equate it to actual robot behavior

• To ensure that students can look at robot behavior and equate it to a flow chart

• Use a flow chart to spot errors in logic (it didn’t work, where is the problem?)

Preparation

1. Print the flowchart symbol (resource slide).

2. Cut out the flowchart symbols ahead of time (one set per group or one for the whole

class) or print the sheet and have the students cut them out.

• A magnet on the back makes them great to use on a whiteboard

• You can make some oversized symbols if you plan this as a whole group activity

Activity

1. Have the students complete the following flowchart activity.

2. Using the cutouts make a flowchart and have the students draw out what they think

the robot will do (pretend the robot leaves a mark on the floor/board with a marker

as it moves around).

3. Using a reference robot path (one is provided in resources), print the sheet

for each group or draw it on the board and have the students work

backwards creating a flowchart from the actual path.

START

STOP

MAKE A

DECISION

YES or NO

DO SOMETHING

MAKE A

DECISION

YES or NO

START

STOP

DO SOMETHING

DO SOMETHING

DO SOMETHING

YESYESYESYES

NONONONO

Create a Flow Chart from the robot’s path

START

STOP

5 feet

1 foot

3 feet

2 feet

2 feet

2 feet

8 feet

1 foot

Create a Flow Chart from the robot’s path (decisions)

START

STOP

W

A

L

L

1. Decide what you want the robot to do.

I want the robot to I want the robot to

start, move forward and

stop before it hits the

wall

2. Draw a DIAGRAM that shows the steps.

But not just any old DIAGRAM…..

Computer Scientists & Engineers use

a diagram of their program called

a FLOWCHART.

Notice how they use different SHAPES and

COLORS.

So that everyone will understand each

other’s flow charts everyone uses the

same shape and color for certain

actions.

START

STOP

MAKE A

DECISION

(YES or NO)

DO SOMETHING

The start and the stop

are easy to understand:

these are where the

instructions “program”

starts and stops

What the robot is

programmed to do

Yellow diamonds are always a

choice or decision (you must have

at least two choices after a yellow

diamond)

The arrows show the

direction or flow of

the instructions

“program”.

That’s why it is called

a flowchart!

START

STOP

MAKE A

DECISION

YES or NO

Move Forward 3

feet

Is There a Wall?

YES or NO

START

STOP

DO SOMETHING

Move Backward 3

feet

DO SOMETHING

YESYESYESYES

NONONONO

Now, cut out your shapes and sort them

3. Use your cut outs to make a flow

chart of a program that:

1. Has your robot START.

2. Has your robot move forward 3

feet.

3. Has your robot STOP.

Did you remember the arrows?

Arrows are very important in a FLOWChart…..

START

STOP

Move Forward 3

feet

Starts the program

“instructions”…

…then it…

...moves forward 3 feet…

…then it…

…stops the program

“instructions”…

5. Now make a flowchart of a

program that:
1. Has your robot START.

2. Has your robot move forward 3

feet.

3. Has your robot move backward 3

feet.

4. Has your robot STOP.

START

STOP

Move Forward 3

feet

Move Backward 3

feet

MAKE A

DECISION

4. Time to make a decision.

YES or NO?

Is there a wall

right in front of

you?

The decision will change what the

robot does.

What do I do?

If YES

If NO

MOVE FORWARD 3 feet

STOP

Is there a wall

right in front of

you?

START

Notice that a choice MUST be made

Notice the 2

choices or options

Now I know

what to do?

Now I know

what to do?

6. Now make a flow chart of a program that:

1. Has your robot START.

2. Has your robot move forward

3 feet.

1. Has your robot detect a wall and

make a decision. (YES or NO)

2. Has two choices for your robot.

3. Has your robot STOP.

If YES

MOVE FORWARD 3 feet

STOP

Is there a wall

right in front of

you?

START

7. Now make a flowchart of a

program of your own choice.

Include at least one decision.

DRAW WHAT YOU THINK THE FLOW

CHART WILL MAKE THE ROBOT DO
1. In your notebook or on the board draw the path you think

your robot will follow from the following flow chart.

STOP

MOVE FORWARD 3

inches

START

Turn Right

MOVE FORWARD 3

inches

Turn Right
MOVE FORWARD 3

inches
Turn Right

MOVE FORWARD 3

inches

Did you get a square?

Explain what the robot is doing

Flowcharts are great for humans, but

?

Computers don’t understand or

speak this type of language so we

need to write (program) the

instructions in a language that

computers can use

Computers don’t understand or

speak this type of language so we

need to write (program) the

instructions in a language that

computers can use

?
? ?

I don’t

understand

Introduction to Programming Languages

Goals

• To help students understand the terms; IDE, compiler, source code and programming

language

Preparation

• Prepare word/term cards (index cards, etc.) for a word wall (sample in resource slide)

or have the students write the terms in their notebooks

o Machine Language (what the computers understand- Bytes)

o Executes (in terms of a computer running or executing the instructions)

o Source Code (name for code written in programming language)

o Compiled (translated from a programming language to a machine language)

o Programming Language (Language humans understand that can be turned into

machine language)

o C, C++, Java, Python (names of programming languages)

Activity

• After reviewing and discussing the slides have the students generate and agree on the

definitions/uses of the term

o Word Wall

o Write in their notebooks

o With a partner match up the word card with the correct definition card

ExecutesExecutes

Machine

Language

Machine

Language

Source CodeSource Code

CompiledCompiled

The language (bytes)

that computers

understand

The language (bytes)

that computers

understand

Language humans can

understand that can

be turned into

machine language

Language humans can

understand that can

be turned into

machine language

Strange names of

some of the often

used programming

languages

Strange names of

some of the often

used programming

languages

Programming

Language

Programming

Language

Translated from a

programming

language to a

machine language

Translated from a

programming

language to a

machine language

Name for code

written in a

programming

language

Name for code

written in a

programming

language

C, C++, Java, PythonC, C++, Java, Python

A computer _______

a program when it

runs the program

A computer _______

a program when it

runs the program

Programming Languages

Computers only understand machine language (stream of bytes),
which they can then read and execute (run).

Humans on the other hand, don’t do well with machine
language.

Bla, Bla,

Bla, Bla,

?

Why not use an interpreter?

Humans have created languages with funny names like; C, C++,

JAVA, Python, that allow them to write “source code” which they

can understand and edit.

This source code is then compiled (translated) into machine

language that the computer can understand and execute (run).

CompilerProgramming

Language

Machine

Language

Translates

Programming Vocabulary Activity

• Using the cards you cut out or your teacher

provided for you match up the terms with

their definition

Introduction to Programming Languages
Goals

• To help students understand that languages have rules/conventions you must follow

o Sentences start with a capital and end with a punctuation mark, etc.

• Understand how programs such as Microsoft Word or other applications help you

follow the rules/conventions of a program

• Understand that the KISS IDE (Integrated Development Environment) is like a word

processing program that helps them follow the rules/conventions while they write

their source code

• New Vocabulary word is Debug, meaning checking your program for errors and fixing

them much like when Microsoft Word underlines misspelled words or grammatical

errors

Activity

• Have students list things the computer program/application Microsoft Word helps

them with when they are writing.

o In their notebooks

o Whole class activity on the board

Rules you use when writing

• List as many rules as you can think of you

must follow when writing a report in school

o Once you have everything listed go to the next

slide and add anything you didn’t have on your list

Rules/Conventions when writing

These are things that are always done in a language.

For example:

• When writing a sentence you always start with a capital letter

• Complete sentences should end with a period.

• Spaces are used to create paragraphs, which are used to

separate out ideas

• The order of words make a difference

o The ran horse slowly as compared to the horse ran slowly

• Math has conventions as well

o Order of operations (1+2) X 4

Programming Languages

Computer languages are like any other language: they take a

little time and effort to learn all of the rules/conventions.

The more you practice the better you will get!

How does the Microsoft Word program help? Activity

Have you ever used a word processing program such as

Microsoft Word?

What does it help you do when you are typing something like a

report?

• List all of the things the program helps you with

Word Processing programs highlight

possible errors

Integrated Development Environments

(IDE) help you with the rules/conventions

of programming languages

These are software applications (Apps) that make it easy for you

to write and edit your source code, debug it (look for mistakes)

and compile (translate) it.

This is kind of like a word processing program that lets you write

text, format it, spell check, etc.

KISS IDE

To make it easier for you to learn and use the programming

language we have the KISS IDE, which will allow you to develop

source code with the C programming language

Introduction to a simple C program
Goals

• To help students understand the basic components of a C program

o Main program, function, return, curly braces, terminating statements (;) and

comments

• To help students understand what a function is

Preparation

• Students need to be able to see a program

1. Project the “Hello World” onto a white board or screen so the whole class

can see it.

2. Print out the C program “Hello World” so that each group/student has one

(resource on following slide).

3. You can have them open the KISS IDE and select the “Hello World” template

on their computer (instructions on starting KISS IDE in resources).

4. Print out or project a more complicated program and have students find the

main function, curly braces, semicolons and the return.

• You can use vocabulary cards for the new vocabulary words

Activity

Using either the print out, projection or actual KISS IDE on a computer

• Run through the program slides and have students identify the different parts of

the program (they can circle them on a print out, point to them, etc.)

on the simple “Hello World” and the more complicated program as well

• Students can draw a flow chart for each program

Launch the KISS IDE

• Start the KISS IDE by clicking on its icon to get

the welcome screen

• Click on the New File icon and

and choose the C, Hello, World! template

KISS IDE icon

Select Target

• A Target Selection window will appear

• Pick “No Target” and the C program template will come up

The C Template: Hello, World!

int main()
{

printf("Hello, World!\n"); //print Hello World
return 0;

}

int main()
{

printf("Hello, World!\n"); //print Hello World
return 0;

}

int main()
{

printf("Hello, World!\n"); //print Hello World
return 0;

}

Computers read a program just like you read a

book, they start at the top and go to the

bottom. Computers read incredibly fast- 800

MILLION lines per second!

int main()
{

return 0;
}

STOP

START

Return 0

Programming Languages have Rules/Conventions as well,

let’s look at a simple C (programming language) program

int main()
{

return 0;
}

This is the main function and

where a program starts

executing. ALL C programs

must have a main() function.

A function specifies what is

to be done. It is like a title to

a book of instructions.

STOP

START

Return 0

Functions

Function- a function in a program specifies what is to

be done. It is like a title to a book of instructions.

A clean_house() function could mean

vacuum, dust, mop, change the linens, wash the

windows etc... all the commands specified in the

function are executed.

Looking at a program

• Programs should always return something. In this case the int

stands for integer (whole number)

• The name is descriptive so you can easily see what it is.

• In between the argument list you can specify details.

– In this case it is not specifying anything to be returned.

int main()
{

return 0;
}

return type name argument list

Looking at a program

The curly braces organize everything you want the program to do

(execute) when the computer comes to the last curly brace it will

end the main program.

int main()
{

return 0;
}

Start

Stop

STOP

START

Return 0

This is the code and specifies the things (functions) you want the

program to execute.

int main()
{

printf("Hello, World!\n");
return 0;

}
STOP

START

Return 0

Print “Hello

World”

Looking at a program

Looking at a program

Notice the program returns a value even though it is 0.

int main()
{

printf("Hello, World!\n");
return 0;

}
STOP

START

Return 0

Print “Hello

World”

Looking at a program

When the program is executing the semicolon terminates the

code and says go to the next line. Without it, the code will not

compile (be translated so the computer can understand it).

int main()
{

printf("Hello, World!\n");
return 0;

}
STOP

START

Return 0

Print “Hello

World”

• Comments appear in

green

• Key words appear in

bold blue

• Text strings appear

in red

• Numbers appear in

aqua
int main()
{

printf("Hello, World!\n");
return 0;

}

The KISS IDE highlights parts of a program to make it
easier to read

• By default, the KISS IDE colors your code and adds line numbers

Functions

Goals

• To help students understand functions and how to access the KISS IDE Function Library

• To reinforce the learning of basic functions they will use when programming their

robots

o Function has descriptive_name (argument); (terminating statement)

Preparation

• Print cards (found in resource slide) that students can have with them when they start

programming their robots

• Have the KISS IDE open and running on a master computer everyone can see OR better

yet open on each of the student’s computers

Activity

• Have the student open the KISS IDE (instruction in resource slides)

o Access the KISS IDE User Manual

o Scroll through the function libraries (The libraries also contain functions for the

iRobot Create Platform in addition to the DemoBot platform these exercises use)

o Have students cut out the function cards they will use when programming their

robots

Background Information

Why use C?
• C is a high level programming language developed to support the

Unix operating system

o The KIPR Link controller utilizes a version of Unix called Linux

• C is the most widely used language for systems programming

• Botball robots need to be programmed at the systems level to use

the features of the KIPR Link

• For the Link controller, the KISS IDE (Integrated Development

Environment) provides a user friendly interface to develop

programs in C, C++, Java and Python

• These activities focus on C

Launch the KISS IDE

• Start the KISS IDE by clicking on its icon to get

the welcome screen

• Click on the “New File” icon and

and choose the C, “Hello, World!” template

KISS IDE icon

Select Target

• A Target Selection window will appear

• Pick “No Target” and the C program template will come up

The C Template: Hello, World!

motor (port#, % power); Turns motor on at % power specified

ao (); All off, turns all motor ports off

digital (port #) ; Refers to a specific digital port #

analog 10 (port#) ; Refers to a specific analog port #

mrp (port#, velocity, position) ; Move to relative position (# ticks)

wait_for_light (port#) ; Robot waits for light in specified port 3 before starting

shut_down-in (time in seconds); Shuts down all motors at specified time

msleep (# miliseconds) ; Program waits specified number of milliseconds

enable_servos () ; Turns servo ports on

set_servo_position (port#, position); Moves servo in specified port to a set position

disable_servos (); Turns all servo ports off

motor (port#, % power); Turns motor on at % power specified

ao (); All off, turns all motor ports off

digital (port #) ; Refers to a specific digital port #

analog 10 (port#) ; Refers to a specific analog port #

mrp (port#, velocity, position) ; Move to relative position (# ticks)

wait_for_light (port#) ; Robot waits for light in specified port 3 before starting

shut_down-in (time in seconds); Shuts down all motors at specified time

msleep (# miliseconds) ; Program waits specified number of milliseconds

enable_servos () ; Turns servo ports on

set_servo_position (port#, position); Moves servo in specified port to a position

disable_servos (); Turns all servo ports off

Functions

A function is like a title to an instruction book. When you call the

function it does all of the commands in the book.

A clean_house() function could mean vacuum, dust,

mop, change the linens, wash the windows, etc… all the

commands specified in the function are executed.

The KISS IDE contains a large library of functions you can use to

program your robots.

Function Examples

• motor(0, 100);

o Turns on motor in port 0 at 100% power

• digital(8);

o Returns the values from the sensor plugged into the #8
digital port. It will be a number, either 1 or 0 (1 =
yes/true and 0 = no/false).

• analog10(3);

o Returns the value of the analog sensor plugged into
analog port #3 (analog values are between 0 and 1024).

Name Arguments
Terminating Statement

I wonder if I wonder if

that

controls

motors?

Where Can I Get Help?

The KISS IDE has an extensive User Manual including a brief
C tutorial

• The User Manual is found under the Help menu

• When using C for Botball, the User Manual is the primary
document to consult

• The User Manual covers the library of functions for accessing
the features of the Link controller and for controlling a Create
module

The Sensors and Motors Manual provides additional
information about the sensors and motors used with the
KIPR Link

• Accessed from the Team Home Base or on teacher’s flash drive

Getting Help
With the KISS IDE open simply select the help tab then

documentation

Select KIPR Link C Standard Library

KISS IDE User Manual

Select KIPR Link Library

KIPR LINK Library

Hint

Until you are familiar with the functions that you will be using

while programming , use your “cheat sheet” for easy reference.

Copy and paste is also very helpful.

motor (port#, % power); Turns motor on at % power specified

ao (); All off, turns all motor ports off

digital (port #) ; Refers to a specific digital port #

analog 10 (port#) ; Refers to a specific analog port #

mrp (port#, velocity, position) ; Move to relative position (# ticks)

wait_for_light (port#) ; Robot waits for light in specified port 3 before starting

shut_down-in (time in seconds); Shuts down all motors at specified time

msleep (# miliseconds) ; Program waits specified number of milliseconds

enable_servos () ; Turns servo ports on

set_servo_position (port#, position); Moves servo in specified port to a set position

Writing Programs- Screen Display

Goals

• To help students understand how to use the KISS IDE to write a program

• To understand how to compile, download and run the program on their Link controller

• To understand how to use the print function to print things to the screen

• To understand how to use the msleep function to give commands time to execute

Preparation

Students will need computers with KISS IDE installed and access to a Link controller

Activity

• Have the student open the KISS IDE (instruction in resource slides)

• Follow the slides to write program to the screen display

First C Program

Programming Basics and Screen Output

Connect the Link to your computer

• Using the USB cable connect to the Link (micro usb port)

• Turn the Link on with the black switch on the side

Writing Your First Program
Launch the KISS IDE

• Start the KISS IDE by clicking on its icon to get

the welcome screen

• Click on the “New Project” icon

• You will have to name and save your project

Writing Your First Program

• Create a Robot Code folder on your desktop (you will use this

for all of your code)

• Name your new project

Use the Browse button to save the project

into your Robot Code folder on your desktop

Writing Your First Program

• You will be asked if you want to add a new file

Notice your project

“teacher” now appears on

the side bar

Notice your project

“teacher” now appears on

the side bar

Writing Your First Program
You now need to select a template

Select under the C files folder, Hello, World!

You will be prompted to

name and save the new

file(use something descriptive)

Writing Your First Program
The “Hello, World” template will now appear

To run the program, you must Compile it

(The compile button sends the program to your

target to be compiled)

A Target Selection window

will appear

Select the usb target (this is your

robot)

Writing Your First Program
You will see the Compile Succeeded! message

Activity 1 (Task Design)
Programming Basics and Screen Output

Break the objectives down into separate tasks and think about

how each might be accomplished; for example, the larger task

might be developing a program to operate a robot's claw, which

has tasks within for making the claw open or close.

Since this is our first example, the task is pretty simple:

1. Display the text "Hello World!" on the Link screen.

Pseudocode and Comments

Pseudocode- write out what you want the program to do

pseudocode (this means "false code") to help write the real code…

// 1. Display "Hello World!" on the screen.

Comment your code (pseudocode makes great comments) - your

comments show what you expect your program to cause your

robot to do, but that might not be what it will actually do!

Comments
Comments as psuedocode are helpful and they help you keep track
of what is going on in the program.

You can make a flow chart and then convert it to psuedocode.

The computer will not execute the comment, but you can see it.

There are 2 ways to comment C programs // and /* */

// is a comment for rest of line

or

/* is a comment that goes from

the initial slash-star until

the first star-slash */

The Program Explained
(it illustrates most C syntax)

int main()
{

//Display Hello World! On screen
printf("Hello, World!\n");
return 0;

}

return type name argument list

Comment

Syntax is important! Notice the quotation marks and

notice the \n at the end?

Function

Blocks of Code

int main()
{

//Display Hello World! On screen
printf("Hello, World!\n");
return 0;

}

Comment

Terminating Statements

int main()
{

//Display Hello World! On screen
printf("Hello, World!\n");
return 0;

}

STOP

START

Return 0

Print “Hello

World”

Compile your program

• Compile your program using the compile tab

Running your program on the Link

• Select the program button that will take you to a list of

programs currently on the Link controller.

Running your program on the Link

• Highlight the program you want to run, in this case, “Hello

World”, and then push the “Run” button

Running your program on the Link

Activity 2
Programming Basics and Screen Output

Write a program for the KIPR Link that displays "Hello World!” and
then displays your “name”, compile, download and run it on your Link.

Psuedocode (Task Analysis)

// 1. Display "Hello World!" on the screen.

printf (“Hello World\n”);

// 2. Display your name on the screen.
printf (“ Botguy\n”);

What did you notice when you ran the

program?
The controller reads the code and goes to the next line faster

than a blink of your eye.

At 800MHz the controller is executing ~800 Million lines of

code/second!

To control a robot you must give the function (command)

TIME to run on the robot.

msleep()

Like printf(), msleep() is a built-in (library) function.

msleep(3000) causes the KIPR Link to pause for 3 seconds

(the m stands for milliseconds or 1/1000 of a second).

• Example:

printf("slow");
msleep(3000);
printf("reader\n");

Activity 3
Programming Basics and Screen Output

Write a program for the KIPR Link that displays "Hello World!" to

the screen, delays two seconds, and then displays your name on

the screen.

Psuedocode (Task Analysis)

// 1. Display "Hello World!" on the screen.

// 2. Pause for 2 seconds.

// 3. Display your name on the screen.

Activity 3 Solution
Programming Basics and Screen Output

#/***
********* Activity 2
***/
int main()
{
// 1. Display "Hello World!" on the screen
printf("Hello World!\n");

// 2. Delay for 2 seconds
msleep(2000); //2000ms = 2sec

// 3. Display your name to the screen
printf("Botguy.\n");

return 0;
}

STOP

STAR

T

Return 0

Print “Hello World”

Pause for 2 seconds

Print “your name”

Debugging

Goals

• To help students understand how to use the KISS IDE to debug a program

Preparation

Students will need computers with KISS IDE installed and access to a Link controller

Activity

• Have the student make intentional errors to learn how to debug their program

Run the Hello World program on

the Link again, but this time …

int main()
{

printf("Hello, World!\n");
return 0;

}

Leave off the

terminating semicolon

and see what happens

\n doesn't show up on the printed output it simply tells the display to print

to a new line similar to the return key on a keyboard

You can download it again to your Link OR simply hit the “BACK” Button on the

touch screen and reselect the “Hello World” Program

• The Link will keep the program you run on it in its program files

• Make sure you name programs so you know which ones to select

Compile Failed “Debugging”

Example “Error Message”

• Compile Failed message at the bottom of the window
line #: col # (on or before)

“expected a ;”

When there is an error, you can

ignore the first error line (“in
function ‘main’”) and

then start reading to see what

the error is. If you have a lot of

errors start fixing them from the

top going down. Fix one or two

and recompile.

Activity Extensions
Programming Basics and Screen Output

• Try adding more printf() statements to your program
(pay close attention to the syntax, particularly the
terminating semi-colon needed by each statement)

• Have the program print out a haiku about robotics

• What does \n and \t do?

• What happens if you leave off the quotation marks?

• Try adding the command display_clear();

• Can you print out more lines than can show on the
screen at one time?

• What happens when the screen fills up?

Moving your robot with the motor() function

Goals

• To reinforce the concept of a function

• To use the motor function to move their robot

Preparation

• You will need the DemoBot built and ready to go

• You will need computers with the KISS IDE

• You will need the USB download cable

Activity

Follow the slides to make the robot move

Activity 3
Lets make a robot move!

Use the provided robot or build your robot using the Demo

Robot building guide.

Connect the Link to your computer

• Using the USB cable connect to the Link (micro usb port)

• Turn the Link on with the black switch on the side

If already running just select new project

• Start the KISS IDE by clicking on its icon to get

the welcome screen

• Click on the “New Project” icon

• You will have to name and save your project

Launch the KISS IDE

Writing Your First Program

• Create a Robot Code folder on your desktop (you will use this

for all of your code)

• Name your new project “Making the Robot Move”

Use the Browse button to save the project

into your Robot Code folder on your desktop

Writing Your First Program

• You will be asked if you want to add a new file

Notice your project

“teacher” now appears on

the side bar

Notice your project

“teacher” now appears on

the side bar

Writing Your First Program
You now need to select a template

Select under the C files folder, Hello, World!

You will be prompted to

name and save the new

file(use “motor”)

The C Template: Hello, World!

We will use this

template every

time and simply

delete out what

we don’t want and

add what we want

Check your Robot’s Motor Ports

• To program your robot, you need to know what

motor ports your motors are plugged into

* REMEMBER computer scientists start counting

at 0 so the motor ports are 0, 1, 2 and 3

KIPR Link Motor Ports

Motor ports 0 (DemoBot), 1, 2, and 3 (DemoBot)

Plugging in Motors

• Motors are the ones with two-prong plugs with 2 gray wires

• The KIPR Link has 4 drive motor ports numbered 0 & 1 on the

left and 2 & 3 on the right

• When a port is powered it has a light that glows green for one

direction and red for the other

• Plug orientation order determines motor direction, but by

convention, green is forward and red reverse

motor port 2

motor port 3
Drive motors
have a 2 prong
plug

Plugged in motors

Motor Ports 0 and 3

Motor Direction
• Motors have grey wires with 2 prongs on the plug

o There is no left or right or colored wire

o You can plug these in two different ways

• Motors rotate in the direction that the electricity
(electrons) move through them. One direction is
clockwise and the other direction is counterclockwise

*You want your motors going in the same direction,

otherwise your robot will go in circles!

1 2 2 1

Motor Port & Direction Check
• There is an easy way to check this!

o Manually rotate the tire and you will see a LED light up by the

motor port (port # is labeled on the board)

• If the LED is green it is going forward

• If the LED is red it is going backwards

• Using the manual tire rotation trick, check the direction and port #’s

of your motors

o If one is red and the other green turn one motor plug 180° and

plug it back in

o The lights should both be green if the robot is moving

forward

Functions to Use

There are several functions for motors, we will begin with motor()

motor(0, 100);
Turns on motor port 0 at 100% power. You can select any power

level up to 100%

msleep(XXXX);
//Pause

ao();
//All Off

Computer scientists start

counting at 0 NOT 1

Computer scientists start

counting at 0 NOT 1

A positive number should

drive the motors forward. If

not, switch the motor plug

180°.

A negative number will drive

the robot in reverse. If the

motors are set up opposite

one another the robot will go

in a circle.

A positive number should

drive the motors forward. If

not, switch the motor plug

180°.

A negative number will drive

the robot in reverse. If the

motors are set up opposite

one another the robot will go

in a circle.

Explain using comments

You can use a flow chart and then translate that

into comments.

Using //comments as pseudocode is a great way

to start.

If you forget which functions to use, look at your

cheat sheet.

Lets make a robot move!

Write a program for your robot to move forward
for 2 seconds and then stop.

• Use motor ports 0 and 3

oCheck the LEDs to make sure you are in the
right ports and going in the right direction

Psuedocode (Task Analysis)
// 1. Drive forward

// 2. Pause program for 2 seconds to give
the motors time to move

// 3. Turn everything off

STOP

START

Drive Forward 2 sec

Turn Motors off

Now that you have written your program, you must Compile it

(The compile button sends the program to your

target to be compiled)
A Target Selection window

will appear

Select the usb target (this is your

robot)

Lets make a robot move!

Running your program on the Link

• Select the program button that will take you to a list of

programs currently on the Link controller.

Running your program on the Link

• Highlight the program you want to run, in this case, “Hello

World”, and then push the “Run” button

Activity 3

Solution

#/***
********* Activity 3
***/
int main()
{
// 1. Drive Forward
motor(0,80); //Motor in port 0 at 80%
motor(3,80); //Motor in port 3 at 80%

// 2. Give time for the motors to move
msleep(2000);

// 3. Turn everything off
ao();
return 0;

}

Notice the motor functions

are commented

Notice the motor functions

are commented

Positive (+) numbers should move the

motors in a clockwise direction

(forward). If not, Reverse the motor

plug 180° where it plugs into the

controller. If your robot goes in a circle

one motor is either not moving (check

the plug) or they are moving in opposite

directions.

Positive (+) numbers should move the

motors in a clockwise direction

(forward). If not, Reverse the motor

plug 180° where it plugs into the

controller. If your robot goes in a circle

one motor is either not moving (check

the plug) or they are moving in opposite

directions.

Robot Driving Hints
Remember your # line, positive numbers go forward and negative
numbers go backwards.

Driving Straight- it is not easy to drive a robot in a straight line.

• Motors are not exactly the same

• The tires may not be aligned well

• One tire has more resistance, etc.

You can adjust this by slowing down and speeding up the motors.

Making Turns

• Have one wheel go faster or slower than the other

• Have one wheel move while the other one is stopped (friction is
less of a factor when both wheels are moving)

• Have one wheel move forward while the other is moving
backwards

-5 -4 -3 -2 -1 0 1 2 3 4 5

ForwardForwardReverseReverse

LET’S MOVE! Materials/Supplies

1. You need a surface to run the robot on

YOU CAN BUY VINYL SURFACES FOR THIS CURRICULUM

http://botballstore.org/product/elementary-botball-challenge-surfaces

Use the floor, desktop (watch for falling robots), a piece of white or light colored

foam or poster board or a vinyl or paper mat as a robot testing track

o You need an area marked as the starting line (a piece of black tape works

well or you can mark it with a black marker)

1. You need an object to navigate to

• Can of soda, foam block, whiteboard eraser, etc. will work

2. A measuring device and a timer will be useful

Soda Can

Starting line (Tape/Marker)

LET’S MOVE!
Activity/mini contests

Using the simple motor function motor(); and msleep();
you can have the students work on fun challenges.

These activities can all be completed using hard coding (“dead
reckoning”) and simple motor control functions without the use
of any sensors. This is a good place to start and will teach the
students how hard it is to be consistent using dead reckoning.

• This is a good time to bring up controlling variables when
they set up their robot- is it the same every time? How
could you make it the same (using a jig or ruler to control
how they set it at the starting line)

Once they have the skills down of forward, backwards, stop, turn
then we can move on and start adding sensors and decision
making into the programs.

Touch the Can

Robots must start on or behind the starting mark and move to the object

with the goal of touching the object in the shortest amount of time

Extensions

• Move the can to various distances

• Make the object smaller and harder to navigate to

• Math- have them measure the distance to the object and time the

robot and then calculate rate/speed

o Speed = Distance/Time

Soda Can
Starting line

Soda Can
Starting line

Closest to the Can

1. Robots must start on or behind the starting mark and move to the object

with the goal of stopping as close to the can as possible without touching it.

• If they touch the can they must start over at the starting line

• Use rulers to measure the distance stopped from the can- make a data

table

• You can use a sheet of paper passed between the robot and can to

determine if it is touching

• You can limit the number of attempts and take the best run or have them

average several runs or add the distances together for a grand total

2. Move the can to various distances and locations

Soda Can
Starting line

Soda Can
Starting line

Closest to/touch the Can and

“Go Home”
1. A variation on touch the can and closest to the can.

2. After stopping closest/touching the can, back the robot up until

touching the starting line

• Move the can to various distances

Soda Can
Starting line

Soda Can
Starting line

Soda Can
Starting line

Circle the Can and

“Go Home”
1. Brings in the concept of turning

• If you touch the can you must start over

• The quickest trip is the winner

• Move the can to various distances

• Make them go clockwise and then counter clockwise

Soda Can
Starting line

Circle the Can(s) and

“Go Home”
Variation on Circle the Can

1. Have them make a figure 8 around two objects

2. Barrel Race (have them go around three cans)

Soda Can
Starting line

Soda Can
Starting line

Park in the Garage

1. Robots must start on or behind the starting mark and park in

the garage (box or tape outline on board)

• Start with the garage straight across from the starting line

o Garage can be roomy and then make it a tight fit

• If they touch the garage they must start over at the starting line

• Move the garage to various distances and locations

Garage

Starting line

Garage

Starting line

Park in the Garage and

Miss the Bicycle

“Park in the Garage” variation

o Place an object(s) between the starting line and garage

Garage
Starting line

Garage

Starting line

Walk the Line
Brings in the concept of driving in a straight line

• Robot must move without touching the line (easiest to hardest below)

o You can use one line and have the robot move down the side without touching it

• Make this a time trial-quickest time without touching (faster is harder to control)

o You can make a lane and have the robot drive down it without touching either side.

• Increase difficulty by making the lane narrower

o You can use one line and have the robot straddle it with the goal of running the full

length without either wheel touching the line

Variations on Walk the Line

Same as before only have them stop and go backwards without touching the

line as well

• Add a starting line to begin and a finish line the robot must touch before

backing up

Variations on Walk the Line-

Jousting!
• Robots on opposite sides of the line move towards each other and try to

knock object off of other robot

o Use whatever object is handy

Engineering Point-

Have the students engineer how they attach their lance (new unsharpened

pencils work well) to their robot

Race Track
Brings in the concept of controlled driving

Robot must move within the lane completing the course

• Make this a time trial the fastest to complete the course with no errors

o If you touch the line then you have to start over and the clock keeps running

• You can use a much larger track if desired (taped lanes on the classroom floor work well)

• You can use different lane setups

o The tighter and more numerous the turns the more difficult it is

• Extension- once finished, make them stop and back up all the way to the start

Moving your robot with the other functions

Goals

• To use the mav() and mrp() functions to move their robot

Preparation

• You will need the DemoBot built and ready to go

• You will need computers with the KISS IDE

• You will need the USB download cable

Activity

Follow the slides to make the robot move using mav() and mrp()

Let’s make a robot move using mav() and mrp()

Use the provided robot or build your robot using the DemoBot

building guide.

Connect the Link to your computer

• Using the USB cable connect to the Link (micro usb port)

• Turn the Link on with the black switch on the side

(if not already running) If running just select new project

• Start the KISS IDE by clicking on its icon to get

the welcome screen

• Click on the “New Project” icon

• You will have to name and save your project

Launch the KISS IDE

Writing Your Program

• Name your new project “Something Descriptive”

Use the Browse button to save the project

into your Robot Code folder on your desktop

Writing Your First Program

• You will be asked if you want to add a new file

Notice your project

“teacher” now appears on

the side bar

Notice your project

“teacher” now appears on

the side bar

Writing Your First Program
You now need to select a template

Select under the C files folder, Hello, World!

You will be prompted to

name and save the new

file(use “something descriptive”)

The C Template: Hello, World!

We will use this

template and

remove what we

don’t need and add

whatever functions

we need

Check your Robot’s Motor Ports

• To program your robot, you need to know

what motor ports your motors are plugged

into

* REMEMBER computer scientists start counting

at 0 so the motor ports are 0, 1, 2 and 3

KIPR Link Motor Ports

Motor ports 0 (Demobot), 1, 2, and 3 (Demobot)

Plugging in Motors

• Motors are the ones with two-prong plugs with 2 gray wires

• The KIPR Link has 4 drive motor ports numbered 0 & 1 on the

left and 2 & 3 on the right

• When a port is powered it has a light that glows green for one

direction and red for the other

• Plug orientation order determines motor direction, but by

convention, green is forward and red reverse

motor port 2

motor port 3
Drive motors
have a 2 prong
plug

Plugged in motors

Motor Ports 0 and 3

Motor Direction
• Motors have grey wires with 2 prongs on the plug

o There is no left or right or colored wire

o You can plug these in two different ways

• Motors rotate in the direction that the electricity
(electrons) move through them one direction is
clockwise and the other direction is counterclockwise

*You want your motors going in the same direction,

otherwise your robot will go in circles!

1 2 2 1

Motor Port & Direction Check
• There is an easy way to check this!

o Manually rotate the tire and you will see a LED light up by the

motor port (port # is labeled on the board)

• If the LED is green it is going forward

• If the LED is red it is going backwards

• Using the manual tire rotation trick, check the direction and port #’s

of your motors

o If one is red and the other green turn one motor plug 180° and

plug it back in

o The lights should both be green if the robot is moving

forward

Other Motor Control Functions

motor(0, 100);

• The motor() function is not always the best way to move your robot

because it is based on a % of power (battery charge)

o As your battery runs down the power decreases and your robot will

not go as far in the same time period

o In competition when precision is required this is not acceptable

mav (0,1000); // Move at velocity ticks/sec

mrp (0,1000,3000);// Move to relative
position in ticks

Ticks

• A “tick” is a unit of measurement used when talking

about the rotation of a motor

• Botball motors have ~1000 ticks in one revolution

o Great math applications doing unit conversions

• Circumference in cm or inches = 1 revolution = ~1000 ticks

250750

500

1000This clock is divided

into 60 second

increments

This clock is divided

into 60 second

increments

This wheel is divided

into 1000 “tick”

increments

This wheel is divided

into 1000 “tick”

increments

Other Motor Control Functions

Move At Velocity

• mav()

• mav (0, 1000)

Move Relative Position

• mrp (0, 1000, 3000)

Motor Port # Velocity -1000 to +1000 ticks/second

-/+ indicates direction

Motor Position in Ticks

(~1000 ticks/tire revolution

Explain using comments

You can use a flow chart and then translate that

into comments.

Using //comments as pseudocode is a great way

to start.

If you forget which functions to use, look at your

cheat sheet.

Activity 4

Move to Relative Position

Write a program for your robot to:

Psuedocode (Task Analysis)
1. //Move motor 0 forward @1000 ticks/second to a
position of 4000 ticks

2. //Move motor 3 forward @ 1000 ticks/second to
position of 4000 ticks

3. //Allow 6 seconds to complete moving to position

4. //Move motor 0 backward @ 1000 ticks/second to
position of -4000 ticks

5. //Move motor 3 backward @ 1000 ticks/second to
position of -4000 ticks

6. //Allow 6 seconds to complete moving backwards

7. //Shut everything off

STOP

STAR

T

Turn motors off

Move forward 4000

Ticks

Move backwards

4000 ticks

Activity 4 Solution

int main()

{

mrp (0,1000,4000); //motor 0 @ 1000 ticks/second to position of 4000

ticks

mrp(3,1000,4000); //motor 3 @ 1000 ticks/second to position of 4000

ticks

msleep (6000); //Allow 6 seconds to complete, should have a 2 second

pause

mrp (0,1000,-4000); //motor 0 @ 1000 ticks/second to position of -4000

ticks

mrp(3,1000,-4000); //motor 3 @ 1000 ticks/second to position of -4000

ticks

msleep (6000); //Allow 6 seconds to complete, should stop in 4 seconds

ao (); //All off

return 0;
}

Motor Commands
motor (0,100); Is great for turning gears or winding up string

on a pulley

Not so much for driving robots as it is dependent

on the battery charge

mav (0, 1500); Is great for driving robots and not as dependent

on battery charge

Greater precision of control

Must use msleep (); correctly

mrp (0,1000,4000); Provides the most precise level of control

Most complicated to use

Robot Driving Hints
Remember your # line, positive numbers go forward and negative
numbers go backwards.

Driving Straight- it is not easy to drive a robot in a straight line.

• Motors are not exactly the same

• The tires may not be aligned well

• One tire has more resistance, etc.

You can adjust this by slowing down and speeding up the motors.

Making Turns

• Have one wheel go faster or slower than the other

• Have one wheel move while the other ones is stopped (friction
is less of a factor when both wheels are moving)

• Have one wheel move forward while the other is moving
backwards

-5 -4 -3 -2 -1 0 1 2 3 4 5

ForwardForwardReverseReverse

LET’S MOVE! Materials/Supplies

1. You need a surface to run the robot on

• Use the floor, desktop (watch for falling robots), a piece of white or light

colored foam or poster board or a vinyl or paper mat as a robot testing track

o You need an area marked as the starting line (a piece of black tape works

well or you can mark it with a black marker)

2. You need an object to navigate to

• Can of soda, foam block, whiteboard eraser, etc. will work

3. A measuring device and a timer will be useful

Soda Can

Starting line (Tape/Marker)

LET’S MOVE!
Activity/mini contests

Using the simple motor function mav();, mrp() and
msleep(); you can have the students work on fun challenges.

These activities can all be completed using hard coding (“dead
reckoning”) and simple motor control functions without the use
of any sensors. This is a good place to start and will teach the
students how hard it is to be consistent using dead reckoning.

• This is a good time to bring up controlling variables when
they set up their robot- is it the same every time? How
could you make it the same (using a jig or ruler to control
how they set it at the starting line)

Once they have the skills down of forward, backwards, stop, turn
then we can move on and start adding sensors and decision
making into the programs.

Touch the Can

Robots must start on or behind the starting mark and move to the object

with the goal of touching the object in the shortest amount of time

Extensions

• Move the can to various distances

• Make the object smaller and harder to navigate to

• Math- have them measure the distance to the object and time the

robot and then calculate rate/speed

o Speed = Distance/Time

Soda Can
Starting line

Soda Can
Starting line

Closest to the Can

1. Robots must start on or behind the starting mark and move to the object

with the goal of stopping as close to the can as possible without touching it.

• If they touch the can they must start over at the starting line

• Use rulers to measure the distance stopped from the can- make a data

table

• You can use a sheet of paper passed between the robot and can to

determine if it is touching

• You can limit the number of attempts and take the best run or have them

average several runs or add the distances together for a grand total

2. Move the can to various distances and locations

Soda Can
Starting line

Soda Can
Starting line

Closest to/touch the Can and

“Go Home”
1. A variation on touch the can and closest to the can.

2. After stopping closest/touching the can, back the robot up until

touching the starting line

• Move the can to various distances

Soda Can
Starting line

Soda Can
Starting line

Soda Can
Starting line

Circle the Can and

“Go Home”
1. Brings in the concept of turning

• If you touch the can you must start over

• The quickest trip is the winner

• Move the can to various distances

• Make them go clockwise and then counter clockwise

Soda Can
Starting line

Circle the Can(s) and

“Go Home”
Variation on Circle the Can

1. Have them make a figure 8 around two objects

2. Barrel Race (have them go around three cans)

Soda Can
Starting line

Soda Can
Starting line

Park in the Garage

1. Robots must start on or behind the starting mark and park in

the garage (box or tape outline on board)

• Start with the garage straight across from the starting line

o Garage can be roomy and then make it a tight fit

o If they touch the garage they must start over at the starting line

• If they touch the garage they must start over at the starting line

• Move the garage to various distances and locations

Garage

Starting line

Garage

Starting line

Park in the garage and

Miss the Bicycle

“Park in the Garage” variation

o Place an object(s) between the starting line and garage

Garage
Starting line

Garage

Starting line

Walk the Line
Brings in the concept of driving in a straight line

• Robot must move without touching the line (easiest to hardest below)

o You can use one line and have the robot move down the side without touching it

• Make this a time trial-quickest time without touching (faster is harder to control)

o You can make a lane and have the robot drive down it without touching either side.

• Increase difficulty by making the lane narrower

o You can use one line and have the robot straddle it with the goal of running the full

length without either wheel touching the line

Variations on Walk the Line

Same as before only have them stop and go backwards without touching the

line as well

• Add a starting line to begin and a finish line the robot must touch before

backing up

Variations on Walk the Line-

Jousting!
• Robots on opposite sides of the line move towards each other and try to

knock object off of other robot

o Use whatever object is handy

Engineering Point-

Have the students engineer how they attach their lance (new unsharpened

pencils work well) to their robot

Race Track
Brings in the concept of controlled driving

Robot must move within the lane completing the course

• Make this a time trial the fastest to complete the course with no errors

o If you touch the line then you have to start over and the clock keeps running

• You can use a much larger track if desired (taped lanes on the classroom floor work well)

• You can use different lane setups

o The tighter and more numerous the turns the more difficult it is

• Extension- once finished, make them stop and back up all the way to the start

Functions

Goals

• To help students understand functions and how write their own functions for

repetitive tasks

• To understand that functions have two parts, a prototype and a definition

• To understand how to write a function prototype and definition

• To put a function prototype and definition into their code

Preparation

• Have KISS IDE up and running

• Have a robot ready to go

• Have markers if you choose to mark the path of the robots

Activity

• Have the students program their robots to drive a square (you can set the dimensions

however you would like)

• After being successful work through the “How to Write a Function” activities

• Have students complete the geometric activities using functions they write themselves

The Importance of Functions

• Now that you have the hard coding down with

the robots let’s move on to something that

teaches you how to write your own functions

o Start with the simple draw a square activity

Get your Robot to Draw a Square

Program your robot to draw geometric patterns

1. Start with having the robot make a 90° turn (both directions)

2. Now have the robot make a box

• You will have to remember the path your robot is taking OR

o Tape a marker to the back to mark on a piece of paper while

the robot runs

o Once you have mastered using a servo the robot can raise a

marker up and down and actually draw on a piece of paper

Drawing a Square

Here is some code that uses

the motor(); and

msleep(); functions to

drive the robot in a square

Drawing a Square
Notice there are many repeated
steps. For example:

//drive forward for 4

seconds
motor(0,100);
motor(3,100);
msleep(4000);

is repeated 4 times in this program.

• And so is turn right for 2 seconds

• As well as stop motors

You will quickly learn to use copy and
paste over and over again, but there is a
better and easier way.

Learning to write your own functions
allows you to repeat code easily.

Writing Your Own Functions
• Remember, a function is like a title to an

instruction book. When you call the function it
does all of the commands in the book.

oThis can be very helpful if you are doing
repetitive actions such as making a 90° turn,
moving straight, turning 180°, moving an arm
up and closing a claw.

oIt makes it easier to read the main program and
to simply change a value if needed

Remember a function has a name and arguments

name(arguments); = motor (0,90);

Variables Explained

Since variables in C have differing types, you have to specify the data type
for each of your function’s arguments, and the type of data returned by
the function (which can be void if nothing is being returned).

Many of the functions in the KIPR Library like motor (); have this
hidden.

Most of the time your students will only be dealing with void (no data
returned) and int (arguments).

Data types you may use:

Void Nothing is returned

Int Returns an Integer (whole number such as 5)

Double Returns a fraction of a whole (decimal such as 5.0)

Function Prototypes
Take some functions you are familiar with:

motor (0,100); and mrp (0,1000,5000);

• The prototype or formats/name for them are:

void motor (int m, int p);

Data type returned | Function name | Data type for arguments

void mrp (int motor port, int velocity, int pos);

You can find the prototype (format) for every function in the KIPR Help
Manual “KIPR Link Library”

Function Prototype & Definition
motor(0,100);

IF //drive forward for 4 seconds = motor(3,100);

msleep(4000);

A prototype is the name for your function that you will use when programming

In this case the function prototype would be:

void drive_forward();

And the function definition is what the function actually does, in this case:

void drive_forward()

{ //definition start

motor(0,100); //runs motor 0 at 100%

motor(3,100); //runs motor 3 at 100%

msleep(4000); //turns off after 4 seconds

} //definition close (end)

Notice there is no

terminating semicolon

after the function name,

because the robot needs

to look for the definition

Notice how the function prototype is
BEFORE the int main()

void drive_forward();

And the function definition is
provided AFTER the main program

• Note there is no semicolon after
the function in the definition

void drive_forward()

{

motor(0,100);

motor(3,100);

msleep(4000);

}

Function Prototype (before the main)

Notice the function calls

Function definition (after the main)

Function Prototype
Now that you have your drive forward function written you can write a right

turn function and put it into your program

// turn to the right for 2 seconds

void right_turn(); Prototype (goes before the main)

void right_turn() Definition (goes after the main)

{

motor(0,100);

motor(3,20);

msleep(2000);

}

Function Prototype
Now that you have your right turn function written you can write a stop

motor function

//Stop motors

void stop_motors(); Prototype (goes before the main)

void stop_motors() Definition (goes after the main)

{

motor(0,0);

motor(3,0);

}

Main is shorter and

easier to read

Main is shorter and

easier to read

Code without writing

your own functions

Code without writing

your own functions

Code with writing your

own functions

Code with writing your

own functions

Advantages
1. It makes the main program easier to read,

understand and spotting mistakes is much easier

1. It allows you to change a variable value one time

in the function definition for the entire program

• Let’s say you wanted to draw a smaller

square

o Simply change the msleep() value

in your drive_forward() function

definition from 4000 to 2000 and the

msleep() value in your

right_turn() function definition

to 1000.

Tip:
Go to the end of the program and write the

definition first (remember no semicolon) and then

go to the top and fill in the prototype

Get your Robot into Shape!
Have the robots draw geometric patterns

1. Have the robot complete a circle

2. Triangle, Star, Pentagon, etc.

3. Make sure you are writing your own functions for repeated actions in

the code

4. Great activity for math/geometry extensions

Programming the robot to run for a set

amount of time

Goals

• Learn how to use the shut_down_in(); function to have the robot shut down

after running for a set amount of seconds

*In Botball teams must automatically shut_down_in(120);

Preparation

• You will need the DemoBot built and ready to go

• You will need computers with the KISS IDE

• You will need the USB download cable

• You will need materials for “Touch the Can” and “Circle the Can” activities

Activity

Follow the slides to make the robot shut down in XXX seconds

You can put a “Maximum” time limit to complete any of the previous activities

You have 3 seconds to complete your mission!

Use the provided robot or build your robot using the DemoBot

building guide.

Connect the Link to your computer

• Using the USB cable connect to the Link (micro usb port)

• Turn the Link on with the black switch on the side

If already running just select new project

• Start the KISS IDE by clicking on its icon to get

the welcome screen

• Click on the “New Project” icon

• You will have to name and save your project

Launch the KISS IDE

Writing a Program

• Create a Robot Code folder on your desktop (you will use this

for all of your code)

• Name your new project “something descriptive”

Use the Browse button to save the project

into your Robot Code folder on your desktop

Writing Your First Program

• You will be asked if you want to add a new file

Notice your project

“teacher” now appears on

the side bar

Notice your project

“teacher” now appears on

the side bar

Writing Your First Program
You now need to select a template

Select under the C files folder, Hello, World!

You will be prompted to

name and save the new

file(use “something descriptive”)

The C Template: Hello, World!

We will use this

template every

time and simply

delete out what

we don’t want and

add what we want

Programming your robot to run for a

set amount of time

The shut_down_in(); function will end the program after

the number of seconds you put into the argument.

shut_down_in(3.0); //3 seconds

shut_down_in(120.0); //120 seconds

Uses

• Botball robots must shut down automatically at the end of the

round

You have 3 seconds to complete

your activity

Write a program for your robot that has it drive forward for 6

seconds and shut down in 3 seconds using the shut_down_in

(3.0); function

Psuedocode (Task Analysis)

// 1. Shut down in 3 seconds

// 2. Drive Forward for 6 seconds

// 3. Shut off all motors

STOP

START

Shut down in 3 seconds

Drive forward for 6 seconds

All motors off

Programming your robot to run for a

set amount of time example

Notice the function prototype for drive-forward

Notice the function definition for drive-forward

Program will end in 3 seconds

Even though this says to run for 6 seconds it will

be shut down in 3 seconds

Programming your robot to run for a

set amount of time activities

Now complete the following activities again, but this time

make the time limit 60 seconds to complete the task

Closest to/Touch the Can

and Go Home
1. A variation on Touch the Can and Closest to the Can.

2. After stopping closest/touching, back up until touching the starting

line

3. Using the shut_down_in(); give this a 30 second time limit

Soda Can
Starting line

Soda Can
Starting line

Soda Can
Starting line

Circle the Can and Go Home

1. Brings in the concept of turning

– If you touch the can you must start over

– The quickest trip is the winner

– Move the can to various distances

– Make them go clockwise and then counter clockwise

2. Using the shut_down_in(); give this a 30 second

time limit

Soda Can
Starting line

Circle the Can(s)

and Go Home

Variation on Circle the Can

1. Have them make a figure 8 around two objects

2. Barrel Race (have them go around three cans)

3. Using the shut_down_in(); give this a 90

second time limit

Soda Can
Starting line

Soda Can
Starting line

Park in the Garage

Robots must start on or behind the starting mark and park in the

garage (box or tape outline on board), If they touch the garage they

must start over at the starting line

1. Start with the garage straight across from the starting line

• Garage can be roomy and then make it a tight fit

2. Move the garage to various distances and locations

3. Using the shut_down_in(); give this a 60 second time limit

Garage
Starting line

Garage

Starting line

Programming the robot to start automatically

when it senses a light
Goals

• Learn how to use the wait_for_light(); function to have the robot sense a light

and start

• Students will start working with and becoming familiar with using sensors

• Student will learn how to access and use the sensor list and sensor graph features on the

Link

*Autonomous robots need to start automatically when they sense a light

Preparation

• You will need the DemoBot built and ready to go

• You will need computers with the KISS IDE

• You will need the USB download cable

• You will need a light sensor and something to attach it to the robot (uglu, tape etc)

• The light sensor

• A flashlight *THE SENSOR IS AN INFRARED SENSOR SO MOST LED LIGHTS WILL NOT

WORK (YOU NEED AN INCANDESCENT)

Activity

Follow the slides to make the robot start automatically when it senses a light

You can add the wait_for_light(); to complete any of the previous

activities

Start your programs with a light

The wait_for_light(); function allows your program to run

when your robot senses a light

• It has a built in calibration routine that will come up on the screen
(routine is on following slides)

Tip: The light sensor senses infrared so it must be an incandescent

light and not an LED light

• You need a flashlight

The more light (infrared) sensed the lower the reported value

Uses

The light sensor is used to start Botball robots at the beginning of the

game and it is a cool way to “automatically” start your robot

Plug in Your Light Sensor
and get your flashlight!

analog ports (0-7) and digital ports (8-15)

Plug your light sensor

into analog port 0

Plug your light sensor

into analog port 0

Sensor plug
orientation

Reading Sensor Values From the Sensor List

You can access the sensor values from the sensor list on your Link

• This is very helpful to get readings from all of the sensors you are
using. You can then use the values in your code

Select Sensor ListSelect Sensor List Sensor PortsSensor Ports Sensor ValuesSensor Values

Reading Sensor Values From the Sensor List
With the light sensor plugged into analog port #0

• With no light sensed the value is (992)

• When the flashlight is on and IR is sensed the value is much lower (38)

Value of 992 (not sensing light)Value of 992 (not sensing light) Value of 38 (sensing light)Value of 38 (sensing light)

Watching Sensor values on the Sensor Graph

You can also have a real-time graph of all of the sensor
ports. Select the Sensor Graph and then select the sensor
port # (in this case, 0)

Select Sensor ListSelect Sensor List This is graphing Analog port #0 (light sensor) you can easily see

when the light was turned on as the value rapidly decreases

This is graphing Analog port #0 (light sensor) you can easily see

when the light was turned on as the value rapidly decreases

The light calibration routine
When you use the function in your code the

calibration routine will start automatically

When the light is on (low value)

select Light is On button

When the light is on (low value)

select Light is On button

When the light is off (high value)

select Light is Off button

When the light is off (high value)

select Light is Off button

You will get a Good Calibration!

Message when done correctly IF

NOT you will get a BAD

CALIBRATION message (you need

to run through the routine again)

You will get a Good Calibration!

Message when done correctly IF

NOT you will get a BAD

CALIBRATION message (you need

to run through the routine again)

I See the Light!
1) Write a program that uses a light sensor to start your robot

• You should have a light sensor plugged into analog sensor port #0

2) Have it run forward for 3 seconds and

then stop

Psuedocode

Psuedocode
// Check value of light sensor in analog_port 0

// Drive forward when sensor sees light

// Allow 3 seconds to move forward

// Turn everything off
All motors off

Wait for light

NONO

STOP

START

Y

E

S

Y

E

S

Drive forward for 3 seconds

on?

Is

the

light

on?

I See the Light! Solution

Notice the function prototype for drive-forward

Notice the function definition for drive-forward

I See the Light!

1) Add the wait_for_light(); function to the start of any

of the previous challenges and activities

• You cannot touch the robot to start it, it MUST start on its own after

sensing the light

Touch the Can

1. Robots must start on or behind the starting mark and move to

the object with the goal of touching the object in the shortest

amount of time

2. The robot must be started with a flashlight

Soda Can
Starting line

Soda Can
Starting line

Using Servo motors

Goals

• To distinguish between motors and servo motors

• To help students understand how to use Servo Motors with their robots

• Enable, disable, set position and get position functions

Preparation

• Have KISS IDE up and running

• Have a robot ready to go

• Have a servo motor

Activity

Follow slides

Servo Motors (Servos)
• A servo is a motor that rotates to a specified position between 0° and

180°

• Servos are great for raising an arm or closing a claw to grab something

• The motors and servos look similar except that a servo has 3 wires

(usually colored orange, red, brown) and a plastic plug on the end

Servo Motor Ports

servo ports 0 and 1; servo ports 2 and 3

Servo Motors (Servos)

• Notice the case of the link is marked:

o - for the brown wire

o + for the red wire (it is in the center)

o S for the signal wire (regulates the servo position)

servo port 3

brown wire (-)

red wire (+)

orange wire (S)

servo port 2

Servo Motors (Servos)
• If you think of a servo like a protractor

o The 180° is divided into 2048 positions (0-2047). Remember we start

counting with 0 and not 1

o This allows for greater precision when setting a position (you have

2048 different settings you can choose)

• The default position is 1024 (centered)

0

1024

2047

Servo Motors (Servos)
To help save power, servo ports by default are not active until enabled

Functions are provided in the KIPR Link library for enabling (or disabling) all

servo ports and for sending them to a position

enable_servos(); activates all servo ports

disable_servos(); de-activates all servo ports

set_servo_position(2,925); rotates servo 2 to position 925

• Remember the range is 0-2047

• Default position when servos are first enabled is 1024, BUT You can

preset a servo’s position before enabling servos so it will immediately

move to the position you want when you enable servos

Servo Activity
1. Make sure your Link is turned on

2. Plug a servo motor into Servo Port 0

3. Follow the guides to access the Servos Page on the Link

Servo Activity

1. Use the Servo Page to test your Servo.

Select the

Servo Port

This is the

Servo

Position Enables

the Servo

Servo Activity

1. Use the Servo Page to test your Servo.

Use your finger to

move the dial

Servo

Maxed out

@ 2047 Servo @

1513

Servo

@537

REMEMBER DO NOT KEEP PUSHING A SERVO BEYOND

THE 0 OR 2047 POINTS- THIS CAN BURN SERVOS OUT

Sensor and Motor Manual

• For further detail

about servos, consult

the Sensor and Motor

Manual available via

KISS IDE help or on

your KIPR USB

Link

Wheel

Servo Activity 1
• Wave the pointer

• Using the servo and pointer on your demo-bot

WARNING

The servo mounted on your DemoBot is not free to move to all possible positions

because it will run into the chassis and the controller

• DO NOT keep trying to move a servo to a position it cannot reach as this

can burn out the servo as well as consume too much power

• Use the KIPR Link servo screen to determine the positions before hitting

the chassis and the link and then use them in the code

Servo Activity

set_servo_position();

Link

Wheel

Write a program for your robot to:

Psuedocode (Task Analysis)

1. //Enable servos
2. //Move servo 0 to 1400 OR # YOU DETERMINED FROM SERVO SCREEN
3. //Allow 1 second to complete moving to position
4. //Move servo 0 to 1024 OR OR # YOU DETERMINED FROM SERVO SCREEN
5. //Allow 1 second to complete moving to position
6. //Shut everything off

Servo Activity

set_servo_position();

Solution

int main()
{
enable_servos(); //enable servos
set_servo_position (0,1400); //Move servo 0 to 1400 OR # YOU DETERMINED
msleep (1000); //Allow 1 second to complete moving to position
set_servo_position (0,1024); //Move servo 0 to 1024 OR OR # YOU

DETERMINED
msleep (1000); //Allow 1 second to complete moving to position
ao (); //shut everything off
return 0;

}

Waving Robot

• Now that you can move the servo to any desired position

make the robot wave continually

oWrite a function for the waving behavior and use it

Link

Wheel

Have the robots “dance” by moving their servo and their

motors to the Hokey Pokey

• Pick other songs and program the robot to dance

• Make sure and play the music so they have to

have some rhythm

You put your right hand in, //Move servo to pointing position

You put your right hand out, //Move servo to vertical position

You put your right hand in, //Move servo to pointing position

And you shake it all about, //Move robot back and forth rapidly

You do the hokey pokey,

and you turn yourself around, //Turn robot in a circle

That what it's all about.

Hokey Pokey (Dancing) Robot

Touch the Can with Your Pointer

1. Robots must start on or behind the starting mark and move to the

object with the goal of touching the object WITH the LEGO attached to

the servo in the shortest amount of time

2. The pointer must start in the vertical position and then move to the

position required to touch the can

Extensions

• Move the can to various distances

• Make the object smaller and harder to navigate to

• Math- have them measure the distance to the object and time the

robot and then calculate rate/speed. Speed = Distance/Time.

Soda Can
Starting line

Soda Can
Starting line

W

h

e

l

W

h

e

e

l

W

h

e

l

W

h

e

e

l

Tag, Your Out

• “Tag” with your servo pointer the objects that are then removed from the board

o Must tag with the pointer only- if they touch it with any part of the robot other

than the pointer it does not count

o Pointer has to change position to tag (they can’t drive around with the pointer

out front all of the time)

• Score points for every item removed from the area

o Use some tape or a marker to indicate where they should be set up

• Place the items at known or set locations

o This is because they are still dead reckoning, once we learn more logic and

decision making, we will use sensors to locate and find the objects, which can

then be tagged and removed

Starting line Starting line

Variations on Walk the Line-

Jousting
1. Robots on opposite sides of the line move towards each

other and try to knock object off of other robot.

• Use whatever object is handy

Engineering*

2. Have them use a servo motor to bring the lance from the

upright starting position to the striking position before

hitting the opponent

W

h

e

l

W

h

e

e

l

W

h

e

l

W

h

e

e

l

Moving Objects with your Robot

Now that you know how to move a servo you can design structures to collect

items and move them around on the game board

• Grabbing objects and dragging or lifting them to move them around on the

game board is very useful in Botball

o You can use containment structures

o You can use claws/grippers

Engineering*

A structure can be built onto the servo on your Demo Bot that can be raised and lowered

to push an object (bulldozer) or dropped over an object and then keep the object with the

robot while it drags it somewhere else on the board (Bulldozers don’t work well in

reverse)

• You can build this out of LEGO or anything handy, foam board etc.

• REMEMBER your SERVO has a limit to how much weight it can lift without

stripping the gears

W

h

e

l

W

h

e

e

l

W

h

e

l

W

h

e

e

l

Moving Objects with your Robot

Claws/Grippers

Engineering*

A structure can be built onto the servo(arm) on your demo bot that can be closed and

opened to grab an object

• You can build this out of LEGO and KMP

o There are a lot of photos of claws and grabbers on YouTube, the Botball

webpage and the Botball Educational Robotics Facebook page

• The easiest and first grabber to build has a static (unmovable) side and a

side with a servo that closes

o Write a function for opening and closing the servo

• You can use two servos, one to raise and lower the claw/gripper and one to

open and close the claw/gripper

Recycle the Can
Robots must start on or behind the starting mark and move to the object with the

goal of bringing the can back to the starting line.

Make the arm/claw/grabber start in the upright position and then lower itself after

starting or approaching the object.

Extensions

• Move the can to various distances

• Make the object smaller and harder to navigate to

• Math- have them measure the distance to the object and time the robot and then

calculate rate/speed

Soda Can
Starting line

Soda Can
Starting line

Soda Can
Starting line

Recycle the Can(s)

Same as recycle the can only with more objects

• Place the items at known or set locations

o This is because you are still “dead reckoning”, once we learn more

logic and decision making, we can program smarter robots that will

use sensors to locate and find the objects, which can then be tagged

and removed

Starting line

Starting line

Starting line

Engineering Design

Goals

• To help students understand how to use the engineering design when building their

robots

• Give students practice building with LEGO

• To compare and contrast different types of effectors

• To analyze a task first and then think about the design of an effector

Preparation

• Have a supply of LEGO available for students to build with

Activity

• Have students build mystery structures with their LEGO

o This gets them familiar with the LEGO pieces and how they work

o Student tend to over build and make effectors TOO HEAVY for the task or the

motor

• Have students look at pictures of towers and bridges to see how they are

constructed

o Point out that triangles are very strong and are often a good way to go

• Have students build structures for the tasks

*A great reference is the Art of Building with LEGO included in your flash drive.

Engineering Design Process

Engineers use this process to design, test and

produce products.

Build with LEGO

• Using the LEGO provided by your Teacher

build a structure that:

– Is the highest free standing tower

– Is the longest cantilevered bridge

– Can support the weight of a can of soda the

highest off of a table

USE THE ENGINEERING PROCESS AS YOU

COMPLETE THESE ACTIVITIES

Bulldozers

Have you seen a bulldozer working before?

What job does it complete?

Thinking about the blade on the front of the bulldozer

– It is great for PUSHING objects

– Not good at pulling objects

– Not good at picking objects up

If your task is pushing something

A flat front blade like a bull dozer will work

• Unless there is too much stuff

o Sides will help

• If you have to turn or back up, sides and a front will

help

• Now the front has to be lowered over the objects

Some bulldozer blade designs on robots
What task are these designed for?

What are the advantages of these

designs?

What tasks wouldn’t these

designs work well for?

What are the disadvantages

of these designs?

If you have to grab something and pick

it up a claw will work well

Notice the long lever sensor to tell

when something is in the claw

Notice one side is fixed and the other is

moved by the servo

Let the Game Begin- Again

Complete the following activities

• Use the engineering design process to

engineer your effectors

Bulldozer Mania
Push as many objects as possible into the designated area

Engineering*

You will need to engineer some kind of a pushing device for the front of the

robot (use LEGO, KMP or any type of construction material)

o Think about what a bulldozer looks like

• Objects can be anything as long as they are relatively easy to push

• Score points for every item in the area

o Items “off” the official track are lost (no points)

• Make large piles that are easier to get

• Spread the items out to make it harder

• Place the items at random on the board

Starting line
Starting line

Bulldozer Mania
Variation

Push as many objects as possible out of the designated area

• Score points for every item NOT in the area

o Items “off” the official track are lost (no points)

• Make the objects harder to move, use a full can of soda

Starting line

Starting line

Sumo
Push the other robot or object out of the designated area

Engineering*

o You will need something on the front of the robot to help push the object

or other robot

o Win a round by pushing the other robot or object out of the designated

area

o Make the object harder to move, use a larger can of soup, etc.

Decision Making and Sensors

Goals

• To help students understand how to use sensors with their robots

• To understand the logic of programming with sensors

• To understand how to write and use a while loop

• Understand that the while loop doesn’t use a semicolon terminating

statement as the program keeps looping

• To use a digital lever sensor to sense when something is touched

• To distinguish between analog and digital sensors

Preparation

• Have KISS IDE up and running

• Have a robot ready to go

• Students will need a long lever touch sensor

• Print out the Boolean Logic Card for each student (on next resource slide) OR

• Put it on the wall, project it, etc.

• Print out the Boolean operator table (in resource slide to follow)

Activity

• Have students complete the Boolean operator table (true or false)

> Greater than

< Less than

>= Greater than or equal

<= Less than or equal

== Equal to

!= Not equal to

&& And - used to put several together

|| Or - used to select both options

! Not

> Greater than

< Less than

>= Greater than or equal

<= Less than or equal

== Equal to

!= Not equal to

&& And - used to put several together

|| Or - used to select both options

! Not

Statement TRUE FALSE

Example 13< 10 X

5 == 4

5 != 4

2 <= 6

500 > 499

23 < 300

4 == 4

32!= 32

Condition
Write the

Statement

five is less than or equal to nine 5 <= 9

Three is equal to Three

four is equal to four

Five is not equal to four

five hundred is greater than two

thirty is greater than or equal to 5

Statement TRUE FALSE

Example 13< 10 X

5 == 4

5 != 4

2 <= 6

500 > 499

23 < 300

4 == 4

32!= 32

Condition
Write the

Statement

five is less than or equal to nine 5 <= 9

Three is equal to Three

four is equal to four

Five is not equal to four

five hundred is greater than two

thirty is greater than or equal to 5

Decision Making and Sensors

You should now realize how hard it is to be

consistent with dead reckoning

Now we will add decision making and sensors to

make our robots smarter

Sensor are detectors that measure a parameter and convert it

into a signal that provides information (value) to your controller

• Proprioceptive sensors

o Report on the current state of the robot itself

• Much like you know if you are sitting down or standing up

even if you are blindfolded

• Examples: encoders, gyros, low-voltage sensors

• External sensors

o Report on the current state of the world

• Much like you can see if the light is on or feel when the

temperature outside gets colder

• Examples: light sensors, range sensors, touch sensors

What is a sensor?

Smarter Robots

When you log onto your computer you must enter a password. The program

checks this against a stored value and if it matches, the code runs and opens.

• If the password doesn’t match, the program runs a different set of code that

prompts you to try again or even locks you out!

• To make a smart robot, we need to check and compare sensor values

o Sensor values are either:

• Analog- Return whole number values between 0-1023 (10bit analog =

2 10 or 1024- remember we start counting at 0)

o Light, small top-hat, ET

• Digital- Return a value of 0 or 1 (true of false)

o Small touch, large touch, lever

*You can find sensor information in the sensor and motor manual on the KISS IDE

help

Smarter Robots

Sensor Functions

You call for the analog sensor value with a function

• You have 8 analog ports (0-7)

Analog10(Port#); Analog10(1);

You call for the digital sensor value with a function

• You have 8 digital ports (8-15)

Digital(Port#); Digital(8);

Sensor Ports

analog ports (0-7) and digital ports (8-15)

Sensor plug
orientation

Checking Values

• When writing code you use OPERATORS that allow the
program to check a value stored against another value to
determine if it is True or False.

Boolean operators

> Greater than 5 > 4 is TRUE

< Less than 4 < 5 is TRUE

>= Greater than or equal 4 >= 4 is TRUE

<= Less than or equal 3 <= 4 is TRUE

== Equal to 5 == 5 is TRUE

!= Not equal to 5 != 4 is TRUE

*Until you are familiar with the Operators that you will be using, you

can use the “cheat sheet” for easy reference.

The Problem With Reading Sensor Values

• Remember your robot controller reads the
code at 8 million lines per second

o This is why we used the msleep(); function to
give the motors and servos time to move

• We must give the robot time to read the
sensor values we are checking

o Instead of having the program sleep (it can’t read
any values while sleeping), we simply need it to
keep repeating the code (looping) to give it time
to read the sensor values

Looping Your Program

If YES

MOVE FORWARD

STOP

Is the lever

sensor

pressed?

START

If NO
If YES

MOVE FORWARD

STOP

Is the lever

sensor

pressed?

START

If NO

It will continue

to keep looping

until the sensor

is pressed at

which point it

will exit the loop

We accomplish this loop with a while statement

Keep the block of code running (looping) until sensor values can be

continually checked and a decision can be made.

The while statement checks to see if something is true or false

(Boolean operators).

while (condition)

{

Code to execute while the
condition is true

}

Notice there is no

terminating

semicolon after

the while

statement

Drive Until Bump Activity

• Robot will drive forward until the long touch sensor is pressed

o You can hold the sensor while the robot is moving and manually

trigger it

• You will need a long lever touch sensor

• Plug it into any of the digital ports (8-15)

o Write a program using a while statement that drives the

robot forward until the lever sensor is activated

Drive Until Bump

Psuedocode (Task Analysis)

1. //Print let’s see if we can stop with a
touch sensor

2. //Pause for 1 second so you can read the
screen

3. //Check the sensor value in digital port
15 and when not pressed == 1 (aka true)
keep checking and drive forward

4. //Exit loop when sensor value in digital
port is pressed == 0 or !=1 (aka NOT
true)

5. //Shut everything off If YES

Print lets see if….

All

Off

Is the

lever

sensor

pressed?

START

If NO

MOVE FORWARD

Drive Until Bump
Solution

Notice the function prototype for drive-forward

Notice the function definition for drive-forward

Notice no semicolon after the

while statement

This is what the robot does

while it is looping

This is what the robot does

while it is looping

Drive Until Bump
Solution

Bump the Can and Go Home
A variation on Touch, Closest to and Recycle the Can.

Engineering*

• Students need to attach the long lever sensor to the front of their robot so

that it will touch the object first

• Use the long lever sensor to detect when you have touched the can and then

return to the starting line

• Move the can to various distances

Soda Can
Starting line

Soda Can
Starting line

Soda Can
Starting line

Bump

Capture the Can/Flag
A variation on Touch, Closest to and Recycle the Can.

Engineering*

• Students need to attach the long lever sensor to the front of their robot so that it will touch the

object first and then have an arm with a Grabber/Claw that is lowered/closed around the can

• Use the long lever sensor to detect when you have touched the can and then lower your

arm/claw/grabber to get the can

o Many claw/grabber designs have a touch sensor that triggers them to close on an object

• Return the can to the starting line

• Move the can to various distances and locations

Soda Can
Starting line

Soda Can

Starting line

Bump

Can on a Pedestal
A variation on Touch, Closest to and Recycle the Can

• You will need a thick book (2-3 inches), dictionary, etc.

Engineering*

• Students will need to engineer a grabber/claw that will grip the object so that it can be
raised and lowered (simple bulldozing will not work) at least high enough to put on the
pedestal

• Use the long lever or other touch sensor to detect when you have the can within your
open claw so that you can grab it and raise it off the ground

• Place the can/object on top of the book (pedestal)

• Move the can and the pedestal to various distances and locations

PEDESTAL

Soda Can

Starting line

Bump, grab

and raisePEDESTAL

PEDESTAL

while Loop Operating a Servo

Suppose we want to have a servo move from position 200 to position 1800 in
steps of 100

• We could do this by writing 16 separate set_servo_position
commands

• With less effort and far better efficiency, this can be done by using a
while loop

while Loops continued

We can use successive while loops if needed to get the
desired behavior

Write a program that:

//Announces the program
//Starts with a light
//Drives forward until large lever
sensor bumps
//Stops the motors
//Prints all done

while Loops continued
Notice the function prototype for

drive-forward

Notice the function definition for drive-forward

Notice no semicolon after the

while statement

Notice no semicolon after the while statement

IF Statements and Following Lines

Goals

• To help students understand how to use sensors with their

robots

• To understand the logic of programming with sensors

• To understand how to write and use an if statement

• To understand how to use the hard and soft buttons on the link

• To understand how to rename the soft buttons on the Link

• To use an IR reflectance sensor to follow a black line

Preparation

• Have KISS IDE up and running

• Have a robot ready to go

• Students will need a small reflectance sensor

Activity

Follow the slides and complete the line following activity

Buttons
Having buttons on the controller can be very useful when programming your robot

On the KIPR Link there is 1 physical button (named side) and 6 soft buttons (named
a,b,c,x,y,z) on the screen

• All have name_button() functions which return 1 if the
button is being pressed and 0 otherwise

• All have name_button_clicked() functions which pause if
the button is being pressed and then returns 1 when it is released
or returns 0 otherwise

• Soft buttons can have their display changed by using
set_name_button_text("display text “);

• By default only a, b and c are displayed. The 3 extra buttons can
be shown using:

extra_buttons_show();

extra_buttons_hide();

Name Your Buttons Activity

Psuedocode (Task Analysis)

1.//Announce program

2.//Change button a to “start”

3.//Change button b to “stop”

if Statements

if statements allow the code being run by the program to be
changed (If the bump sensor is pressed, do this)

if (value)

{

Execute this line of code- whatever is
between curly braces

}

*You can use if statements within a while loop

Just like the while statement no

semicolon is used after the if statement

You will need a Small Top Hat Sensor

This sensor is really a short range reflectance sensor. There is an
infrared (IR) emitter and an IR collector in this sensor. The IR emitter
sends out IR light and the IR collector measures how much is reflected
back.

• Amount of IR reflected back depends on surface texture, color and
distance to surface

This sensor is excellent for line following

• Black materials typically absorb IR and reflect very little IR back, and
white materials typically absorb little IR and reflect most IR back
o If this sensor is mounted at a fixed height above a surface, it is easy to

distinguish a black line from a white surface

Line Following Activity
Using while and if

Reflectance Sensor

analog ports (0-7) and digital ports
(8-15)

Sensor plug
orientation

1. This is an analog(10) sensor so plug it into any of

your analog ports

• Values will be between 0-1023

2. Mount the sensor on the front of your robot so that it is

pointing to the ground and ~1/8” from the surface

Surface

Plug in Your Reflectance Sensor

analog ports (0-7) and digital ports (8-15)Plug your IR

sensor into

analog port 0

Plug your IR

sensor into

analog port 0

Sensor plug
orientation

Reading Sensor Values From the Sensor List

You can access the Sensor Values from the Sensor List on your Link

• This is very helpful to get readings from all of the sensors you

are using, and then you can then use the values in your code

Select Sensor ListSelect Sensor List Sensor PortsSensor Ports Sensor ValuesSensor Values

Reading Sensor Values From the Sensor List

With the IR sensor plugged into analog port #0

• Over a white surface the value is (56)

• Over a black surface the value is (863)

Value of 863 (Black Surface)Value of 863 (Black Surface) Value of 56 (White Surface)Value of 56 (White Surface)

Line Following Activity
Using while and if

Write a program for your robot that:

Psuedocode (Task Analysis)

1. //Announces program

2. //Checks the status of the a button

3. //Checks the value from the reflectance sensor

4. //Turns left if value is >= 512

5. //Turns right if value is < 512

Line Following Activity Solution
Using while and if

Notice the use of the a button for the

while loop. This lets the program

run until the button is triggered.

The value of 512 or the

“threshold” value is ½ way

between the 1024 possible

values. Remember black

reflects less IR than white

so the value is lower.

Notice the Boolean

operators >= 512 or < 512

The value of 512 or the

“threshold” value is ½ way

between the 1024 possible

values. Remember black

reflects less IR than white

so the value is lower.

Notice the Boolean

operators >= 512 or < 512

Notice NO semicolon after the if statements

Line Following Activity Solution

The if statements are all

within the while loop.

This lets the program run

until the while statement is

not true (a_button

pressed)

The if statements are all

within the while loop.

This lets the program run

until the while statement is

not true (a_button

pressed)

Notice the misspelling of “announces”. Comments

can be misspelled or even shorthand, as long as your

team understands what it says. The computer will

not execute any comments, you can even write a

poem in the comments!

Line Following Activity Solution
Tip

The program can get hard to

read. One way to make it

easier is to make sure your

curly braces { } are lined up

The program can get hard to

read. One way to make it

easier is to make sure your

curly braces { } are lined up

Follow Me

Using the reflectance sensor(s) have your robot follow the line
• You can make this a time trial

• Start with a straight line and then move on to curved lines

o The tighter the turn the harder it is to follow

• Have the line come to a T intersection

Engineering*

• Students need to attach the reflectance sensor(s) to the front of their robot

• Have the students use a sensor on each side of the line to see if it improves

performance

• Is it better to have the sensor(s) in the front or the back of the robot?

• How far apart should they be?

Find Black and STOP

Using the reflectance sensor(s) have your robot drive forward until it

senses a black line at which point it stops

• Move the line to various distances

• Make the robot find the line, stop and then back up to the starting

line

Measuring Distance Using the ET

Goals

• To help students understand how to use sensors with their

robots

• To understand the logic of programming with sensors

• To write a program to print a sensor value to the screen

• To use a range finder sensor (ET) to measure a distance

Preparation

• Have KISS IDE up and running

• Have a robot ready to go

• Students will need a range finder sensor

Activity

Follow the slides and complete the activity

You will need the ET Sensor

The “ET” sensor gets its name from the shape of the sensor
resembling a famous movie Extra Terrestrial.

This sensor works by sending out an IR beam and measures the
angle the reflected IR light returns at and triangulates the
distance to an object.

• Maximum detection distance: 80cm

This sensor makes a great medium range distance sensor
• The sensor reads the highest value when it detects an object at

5cm, and value decreases if your object gets closer or farther
away

o One way to fix that is to mount the sensor in such a way that
nothing can get closer than 5cm

Measuring Distances

Reflectance Sensor
1. This is an analog(10) sensor so plug it into any of

your analog ports

2. !FLOATING PORT!

3. For this sensor to work properly you must always change

the analog port that you plug it into to a floating point!

o This is the only sensor that you have to do this for

• Don’t worry, we have a function for this

set_analog_pullup(7,0);

Put this in your code right after the

int main()

Port # 7 The 0 sets it to floating

Reflectance Sensor

analog ports (0-7) and digital ports
(8-15)

Sensor plug
orientation

1. Mount the sensor on the front of your robot so that it is

pointing forward

2. Plug the ET into one of your analog ports and remember

the port #

Plug in Your Reflectance Sensor

analog ports (0-7) and digital ports (8-15)

Plug your IR sensor

into analog port 0

Plug your IR sensor

into analog port 0

Sensor plug
orientation

Because you need a floating point you cannot
use the sensor list to read values

Use the following code to print the value to the Link
screen

Reading the ET Sensor Values
While running the program hold an object in front of

the sensor at different distances to read the corresponding

value

ET ~1 inch from

Link

Value is 387

ET ~1 inch from

Link

Value is 387

ET ~12 inchs from

Link

Value is 158

ET ~12 inchs from

Link

Value is 158

ET Sensor Activity

Using while and if
Now that you have some values to work with, write a program
for your robot that uses the ET sensor to maintain the same
distance from an object

• Too close- backup

• Too far away- move forward

• Just right- stop

Psuedocode (Task Analysis)

//Announces program

//Checks the status of the a button

//Checks the value from the ET sensor

//Moves backwards if the value is > 525

//Move forward if the value is < 475

//Stops if value is >= 475 and <= 525

ET Activity Solution

Using while and if (x3)

Notice the use of the side button for

the while loop. This lets the program

run until the button is triggered

Students can use the sensor

screen to read the values the ET

sensor returns at different

distances so they can figure out

what value goes with each

particular distance.

* Remember the minimum

distance is ~5cm (mount the ET

sensor at least 5cm back from

the front of your robot)

Students can use the sensor

screen to read the values the ET

sensor returns at different

distances so they can figure out

what value goes with each

particular distance.

* Remember the minimum

distance is ~5cm (mount the ET

sensor at least 5cm back from

the front of your robot)

Remember you have to set the port the

ET is using to floating or it won’t work

525)

Touch the Can with the ET
Robots must start on or behind the starting mark and move

to the object at MAXIMUM SPEED with the goal of slowing
down when they are a set distance from the can before they
touch it

• This will teach students how to slow down when approaching an object

• Use rulers to measure the distance stopped from the can- make a data table

• You can use a sheet of paper passed between the robot and can to determine
if it is touching

• You can limit the number of attempts and take the best run or have them
average several runs or add the distances together for a grand total

• Change the “slow down” distance

o A short slow down distance will teach students about momentum

Soda Can
Starting line

Slow

Zone

Maximum

Speed

Follow the Wall

Using the ET sensor have your robot follow a wall maintaining a set

distance from the wall

• The robot goes straight IF the value is….

• The robot turns toward the wall IF the value is….

• The robot turns away from the wall IF the value is….

You can use foam board or some other solid object for the side wall

WALL

Using the Camera to Track Objects

Goals

• To understand how to designate a channel and set the color

model

• To help students understand how to use the camera with their

robots

• To understand the logic of programming with the camera

• To write a program using the camera to follow an object

Preparation

• Have KISS IDE up and running

• Have a robot ready to go

• Students will need a camera mounted onto their robot

• You will need a colored object to track

Activity

Follow the slides and complete the activity

You will need the USB Camera

• The USB camera plugs into one of the USB (type A) ports on

the back of the KIPR Link

• Unplugging the camera while it is being accessed will usually

freeze the system, requiring a reboot

Using the Camera

USB

Ports

Setting the Color Tracking Channels
1. Select “Settings”

2. Select “Channels”

1
2

Setting the Color Tracking Channels

1. To specify a camera configuration select “Add”

2. Enter a configuration name such as “find_green” then press enter

3. Highlight the new configuration and press the “Edit” button

2

1 3

Setting the Color Tracking Channels

1. Press the “Add” button to add a channel to the configuration

2. Select “HSV Blob Tracking” then “OK” to make this track color

3. Highlight the channel and press the “Edit” button to edit settings

• First channel is 0 by default you can add three more 0,1,2,3

1

2

3

Setting the Color Tracking Channels
1. Place the colored object you want to track in front of the

camera and touch it on the touch screen

• The program will put a bounding box (dark blue) around the

selected object then hit “Done”

Setting the Color Tracking Channels

Verify the channel is working

1. From the main screen, select “Motors and Servos”

2. Select “Camera”

• Objects specified in the configuration should have a

bounding box

1

2

About Color Vision Tracking
For color vision tracking, images are processed by the KIPR Link to identify

"blobs" matching the color specification you set in the channel configuration.

• A blob is a set of contiguous pixels in the image matching your channel

color specification

The camera image size is in pixels 160 X 120

• Remember we start counting at 0

160

wide

120

tall

Imagine an x and

y coordinate

system. We start

in the upper left

corner and read

the image like a

person reads text.

Top to bottom

and left to right.

y

x

(0,0) (159,0)

(159,119)(0,119)

About Color Vision Tracking
You can use the position of the object in relation to the center of the image to tell if it is to

the left or right

• And if you know that the image is 160 wide, then the center is 80

o Between 0 and 79 is to the left

o Between 81 to 160 is to the right

o 80 is straight ahead

*You can also use the position of the object in relation to the y axis to tell how far away it is

y

x

(0,0) (159,0)

(159,119)(0,119)

RightRightLeftLeft

(80,0)

(80,119)

get_object_center (channel, #).x;

Will generate a number between 0 and 159

Camera Functions
camera_open(LOW_RES); //sets resolution

• Choices include LOW, MED and HIGH. LOW is best for most applications

camera_close(); //closes camera

camera_update (); //retrieves current image

get_object_count (); //retrieves number of
objects specified by the channel settings
with 0 being the largest object specified in
the area

get_object_center (channel, #); //retrieves x

and y coordinate of the object
get_object_center (channel, #).x;
get_object_center (channel, #).y;

Camera Activity Using while and if and else

Psuedocode (Task Analysis)

1. //Prints Move towards object and Press B button
when ready

2. //Checks the status of the b button

3. //Checks the status of the side button

4. //Updates camera image

5. //Turns left toward object

6. //Turns right toward object

7. //Stops if no object in sight

8. //Stops when side button is pressed

9. //Prints done

*This is the same type program as the line follow activity, but

instead of the reflectance sensor it is using the camera. Because

it knows that 80 is the center of the image anything <80 is to the

left, so turn left, anything >= 80 is to the right, so turn right, if it

doesn’t see anything then it stops.

Solution

• Remember no semicolon

after the while statement

• The first while is simple

• The second while contains

3 if statements and 1 else
statement

• If this is true do this

else (if it is not true) do

this

Camera Activity Solution

This program uses 2 while loops

Camera Activity Solution Using while, if and else

Notice the use of the side button for the while loop

This lets the program run until the button is pushed

Sets camera to LOW RESOLUTION

First while loop waits for b button push to start

Updates to most recent camera image

Checks channel 0 for the largest object = 0 and if it is

>0 (in other words, it sees something) then it…

Checks to see where the object is in relation to the x

axis. To the left then turn left, to the right then turn

right (80 is the midpoint of the 160 pixel image

Checks channel 0 for the largest object = 0 and if it is

= 0 (in other words it doesn’t see anything) then it

turns the motors off

*Make sure the students line up the curly braces otherwise it is easy to get lost

Improved Chase

the Object

You can add another if statement

to have the robot go straight if the

object is near the middle

Find the Can with the Camera
1. Robots must start on or behind the starting mark then using the

camera, find the can and move to it

• Move the can to random locations

Soda Can
Starting line

Get to know your Create©

*The Create platform comes with the intermediate and

advanced starter kits as well as with a Botball kit

Create

• Is an educational platform from iRobot based on the Roomba

vacuum

• iRobot partners with the KISS Institute for Practical Robotics

to provide the platform for student use in the Botball

Educational Robotics Program

• The platform has built in sensors that can be accessed and read with

The KIPR Link robot controller

• More information can be found in the KIPR LINK Manual

You have the

KIPR LINK

Manual on the

flash drive

provided to you

You have the

KIPR LINK

Manual on the

flash drive

provided to you

Charging the KIPR Link Controller

• For charging the KIPR Link, use only the power

supply which came with your Link

o Damage to the Link from using the wrong charger is easily

detected and will void your warranty!

• The KIPR Link power pack is a lithium polymer

battery so the rules for charging a lithium battery for

any electronic device apply

o Only an adult should charge the unit

o You should NOT leave the unit unattended while charging

o Charge away from any flammable materials and in a cool,

open area

Charging the Create

• For charging the Create, use only the power supply

which came with your Create

o Damage to the Create from using the wrong charger is

easily detected and will void your warranty!

• The Create power pack is a nickel metal hydride

battery so the rules for charging a battery for any

electronic device apply

o Only an adult should charge the unit

o You should NOT leave the unit unattended while charging

o Charge away from any flammable materials and in a cool,

open area

Use only the Create charger provided with your kit

The charger plugs into the power socket

Plugging charger into Create

Learning about the Create
Goals

• To be able to insert the battery into the Create properly

• To be able to identify the serial cable used to connect the Link to the Create

• To understand how to place the Link inside the Create Cargo bay

• To understand the proper charging procedure for the Create (only an adult,

only under supervision at all times, not around water or flammable materials)

Preparation

Have a Create and LINK controller available for students to examine along with a

projection of the resource slide with pictures of the controller OR give students a

printed sheet of the resource slide

You will need a KIPR Link-Create cable

Resources

The KIPR Link Manual (on your flash drive)

Learning about the Create

The LINK sits in the cargo bay of the Create

• You will need to attach the fourth wheel

(it simply snaps into place)

Installing the battery in the Create
The yellow battery snaps into place

on the bottom of the Create (make

sure both sides snap into place)

Battery has a long and a short

tab that matches the slot in the

Create

HDMI port speaker side button

2 servo

motor ports

Color touch screen

TTL serial USB 2 USB Power

power switch IR Sensor

8 analog 8 digital

sensor ports sensor ports

2 servo

motor ports

2 motor ports
2 motor ports

KEY

We use the serial cable to plug into the Link TTL

Serial plug

NOTICE the red mark on the plug (left side) this

corresponds to the red wire in the serial cable 3

1
2

Plugging serial cable into Link

Create connector

Link serial plug

Power connector Correctly plugged in

We use the Create connector (round) end

Plugging serial cable into Create

Create connector

Link serial plug

Power connector

Receptacle may have a cover that

you can pop off to access

The plug is keyed, make sure

you line it up correctly before

plugging it in

Know your Create

Have a show and tell describing, explaining and

pointing out:

• The serial cable

• The serial port on the Create

• The serial port on the Link

• The correct orientation for the serial cable to

be plugged into the Link

Moving the Create

Goals

• To reinforce the concept of a function

• To learn and use the functions for connecting to and moving the Create

Preparation

• You will need a charged Create and Link + the serial cable to connect them

• You will need computers with the KISS IDE

• You will need the USB download cable

Activity

Follow the slides to make the robot move

Activity 3
Lets make a robot move!

Use the Create with a Link controller in the cargo bay connected

with a serial cable

Launch the KISS IDE

• Start the KISS IDE by clicking on its icon to get

the welcome screen

• Click on the “New File” icon and

and choose the C, “Hello, World!” template

KISS IDE icon

Select Target

• A Target Selection window will appear

• Pick “USB Target” and the C program template will come up

The C Template: Hello, World!

We will use this

template every

time and simply

delete out what

we don’t want and

add what we want

We use the serial cable to plug into the Link TTL

Serial plug

NOTICE the red mark on the plug (left side) this

corresponds to the red wire in the serial cable 3

1
2

Plugging serial cable into Link

Create connector

Link serial plug

Power connector Correctly plugged in

We use the Create connector (round) end

Plugging serial cable into Create

Create connector

Link serial plug

Power connector

Receptacle may have a cover that

you can pop off to access

The plug is keyed, make sure

you line it up correctly before

plugging it in

Functions to Connect & Disconnect

We must tell the controller to use the serial cable to send

commands to the Create

*The Create must be turned on for this to work

create_connect();//tells the Link to use the serial

connection to the Create

create_disconnect(); //tells the Link to QUIT using the

serial connection to the Create

ALL programs used with the Create MUST start with

create_connect(); and end with create_disconnect();

STOP

START

Drive Forward 2 sec

Turn Motors off

create_connect ();

create_disconnect ();

Functions to Move and Stop

Create commands run UNTIL a different motor command is

received

create_drive_direct (left_speed,right_speed);

create_drive_direct (100,100); //moves forward at 100mm/sec

create_drive_direct (100,200); //create will turn left

create_drive_direct (200,100); //create will turn right

*WARNING maximum speed for the Create motors is 1000mm/second = 1 meter

(~3feet)/second. It will jump off a table in a second! Use something like 200

for the speed (moderate speed) until teams get the hang of this

create_stop (); // stops the motors

Left motor/wheel right motor/wheelSpeed in

mm/second

Speed in

mm/second

Explain using comments

You can use a flow chart and then translate that

into comments.

Using //comments as pseudocode is a great way

to start.

If you forget which functions to use, look at your

cheat sheet.

Lets make a robot move!

Write a program for your robot to move

forward for 2 seconds

Psuedocode (Task Analysis)

// 1. connect to create

// 2. Drive forward

// 2. Pause program for 2 seconds
to give the robot time to move

// 3. stop the motors/create

// 4. disconnect from create STOP

START

Drive Forward 2 sec

Turn Motors off stop create

create_connect ();

create_disconnect ();

Activity 3 Solution

Sleeps for 2 seconds giving the robot

time to move

Sleeps for 2 seconds giving the robot

time to move

Notice the create connect first

thing right after the int main

Notice the create connect first

thing right after the int main

Moves both motors forward at

100mm/second (should go straight)

Moves both motors forward at

100mm/second (should go straight)

Stops the motors Stops the motors

Disconnects create from LinkDisconnects create from Link

Create Driving Hints
Remember your # line, positive numbers go forward and negative numbers go backwards.

The Create is very fast, at 1000mm/sec

It can get away from students quickly
– The Create is heavy and can produce

lots of inertia/momentum (keep this in mind

while trying to get precise distances)

Driving Straight- it is not easy to drive a robot in a straight line.

• Motors are not exactly the same

• The tires may not be aligned well

• One tire has more resistance, etc.

You can adjust this by slowing down and speeding up the motors.

Making Turns

• Have one wheel go faster or slower than the other

• Have one wheel move while the other ones is stopped (friction is less of a factor
when both wheels are moving)

• Have one wheel move forward while the other is moving backwards

-5 -4 -3 -2 -1 0 1 2 3 4 5

ForwardForwardReverseReverse

LET’S MOVE! Materials/Supplies

1. You need a large surface to run the robot on

• Use the floor, a piece of white or light colored foam or poster board or a vinyl

or paper mat as a robot testing track

o You need an area marked as the starting line (a piece of black tape works

well or you can mark it with a black marker)

2. You need an object to navigate to

• Can of soda, foam block, whiteboard eraser, etc. will work

3. A measuring device and a timer will be useful

Soda Can

Starting line (Tape/Marker)

LET’S MOVE!
Activity/mini contests

Using the simple motor function motor(); and msleep();
you can have the students work on fun challenges.

These activities can all be completed using hard coding (“dead
reckoning”) and simple motor control functions without the use
of any sensors. This is a good place to start and will teach the
students how hard it is to be consistent using dead reckoning.

• This is a good time to bring up controlling variables when
they set up their robot- is it the same every time? How
could you make it the same (using a jig or ruler to control
how they set it at the starting line)

Once they have the skills down of forward, backwards, turn and
stop, we can move on and start adding sensors and decision
making into the programs.

Touch the Can

Robots must start on or behind the starting mark and move to the object

with the goal of touching the object in the shortest amount of time

Extensions

• Move the can to various distances

• Make the object smaller and harder to navigate to

• Math- have them measure the distance to the object and time the

robot and then calculate rate/speed

o Speed = Distance/Time

Soda Can
Starting line

Soda Can
Starting line

Closest to the Can

1. Robots must start on or behind the starting mark and move to the object

with the goal of stopping as close to the can as possible without touching it.

• If they touch the can they must start over at the starting line

• Use rulers to measure the distance stopped from the can- make a data

table

• You can use a sheet of paper passed between the robot and can to

determine if it is touching

• You can limit the number of attempts and take the best run or have them

average several runs or add the distances together for a grand total

2. Move the can to various distances and locations

Soda Can
Starting line

Soda Can
Starting line

Closest to/touch the Can and

“Go Home”
1. A variation on touch the can and closest to the can.

2. After stopping closest/touching the can, back the robot up until

touching the starting line

• Move the can to various distances

Soda Can
Starting line

Soda Can
Starting line

Soda Can
Starting line

Circle the Can and

“Go Home”
1. Brings in the concept of turning

• If you touch the can you must start over

• The quickest trip is the winner

• Move the can to various distances

• Make them go clockwise and then counter clockwise

Soda Can
Starting line

Circle the Can(s) and

“Go Home”
Variation on Circle the Can

1. Have them make a figure 8 around two objects

2. Barrel Race (have them go around three cans)

Soda Can
Starting line

Soda Can
Starting line

Park in the Garage

1. Robots must start on or behind the starting mark and park in

the garage (box or tape outline on board)

• Start with the garage straight across from the starting line

o Garage can be roomy and then make it a tight fit

o If they touch the garage they must start over at the starting line

• If they touch the garage they must start over at the starting line

• Move the garage to various distances and locations

Garage
Starting line

Garage

Starting line

Park in the garage and

Miss the Bicycle

“Park in the Garage” variation

o Place an object(s) between the starting line and garage

Garage
Starting line

Garage

Starting line

Walk the Line
Brings in the concept of driving in a straight line

• Robot must move without touching the line (easiest to hardest below)

o You can use one line and have the robot move down the side without touching it

• Make this a time trial-quickest time without touching (faster is harder to control)

o You can make a lane and have the robot drive down it without touching either side.

• Increase difficulty by making the lane narrower

o You can use one line and have the robot straddle it with the goal of running the full

length without either wheel touching the line

Variations on Walk the Line

Same as before only have them stop and go backwards without touching the

line as well

• Add a starting line to begin and a finish line the robot must touch before

backing up

Variations on Walk the Line-

Jousting!
• Robots on opposite sides of the line move towards each other and try to

knock object off of other robot

o Use whatever object is handy

Engineering Point-

Have the students engineer how they attach their lance (new unsharpened

pencils work well) to their robot

Race Track
Brings in the concept of controlled driving

Robot must move within the lane completing the course

• Make this a time trial the fastest to complete the course with no errors

o If you touch the line then you have to start over and the clock keeps running

• You can use a much larger track if desired (taped lanes on the classroom floor work well)

• You can use different lane setups

o The tighter and more numerous the turns the more difficult it is

• Extension- once finished, make them stop and back up all the way to the start

Moving the Create with

create_drive_straight(); AND create_spin_block();

Goals

• To reinforce the concept of a function

• To learn and use the functions for connecting to and moving the Create

Preparation

• You will need a charged Create and Link + the serial cable to connect them

• You will need computers with the KISS IDE

• You will need the USB download cable

Activity

Follow the slides to make the robot move

Activity 3
Lets make a robot move!

Use the Create with a Link controller in the cargo bay connected

with a serial cable

Launch the KISS IDE

• Start the KISS IDE by clicking on its icon to get

the welcome screen

• Click on the “New File” icon and

and choose the C, “Hello, World!” template

KISS IDE icon

Select Target

• A Target Selection window will appear

• Pick “USB Target” and the C program template will come up

The C Template: Hello, World!

We will use this

template every

time and simply

delete out what

we don’t want and

add what we want

We use the serial cable to plug into the LINK TTL

Serial plug

NOTICE the red mark on the plug (left side) this

corresponds to the red wire in the serial cable 3

1
2

Plugging serial cable into LINK

Create connector

LINK serial plug

Power connector Correctly plugged in

We use the Create connector (round) end

Plugging serial cable into Create

Create connector

LINK serial plug

Power connector

Receptacle may have a cover that

you can pop off to access

The plug is keyed, make sure

you line it up correctly before

plugging it in

Functions to Move and Stop
Create commands run UNTIL a different motor command is

received

create_drive_straight() (200);

create_drive_straight (200); //moves forward at 200mm/sec

*WARNING maximum speed for the Create motors is 1000mm/second = 1 meter

(~3feet)/second. It will jump off a table in a second! Use something like 200

for the speed (moderate speed) until teams get the hang of this

Speed in mm/second for BOTH right and left wheels

Explain using comments

You can use a flow chart and then translate that

into comments.

Using //comments as pseudocode is a great way

to start.

If you forget which functions to use, look at your

cheat sheet.

Lets make a robot move!

Write a program for your robot to move

forward for 2 seconds

Psuedocode (Task Analysis)

// 1. connect to create

// 2. Drive straight at 500mm/sec

// 3. Pause program for 2 seconds
to give the robot time to move

// 4. stop the motors/create

// 5. disconnect from create STOP

START

Drive Straight for 2 sec

Turn Motors off stop create

create_connect ();

create_disconnect ();

Activity Solution

Function toTurn/Spin
Create commands run UNTIL a different motor command is

received

create_drive_straight (200); //moves forward at 200mm/sec

*WARNING maximum speed for the Create motors is 1000mm/second = 1 meter

(~3feet)/second. It will jump off a table in a second! Use something like 200

for the speed (moderate speed) until teams get the hang of this

Speed in mm/second for BOTH right and left wheels

Function to Spin your robot
Create commands run UNTIL a different motor command is

received

create_spin_block() (200,90);

create_spin_block() (200,90);//spins 900 at 200mm/sec

*WARNING maximum speed for the Create motors is 1000mm/second = 1 meter

(~3feet)/second. It will jump off a table in a second! Use something like 200

for the speed (moderate speed) until you get the hang of this

Speed in mm/second of the spin (this will turn counterclockwise)

Degree of spin

Lets make a robot draw a square!

Write a program for your robot to move
forward for 2 seconds and then make a 900

turn

Psuedocode (Task Analysis)

// 1. connect to create

// 2. Drive straight at 200mm/sec

// 3. Pause program for 2 seconds to

give the robot time to move

// 4. Turn counter clockwise 900

// 5. Stop motors

// 5. disconnect from create

Activity Solution

Create Driving Hints
Remember your # line, positive numbers go forward and negative numbers go backwards.

The Create is very fast, at 1000mm/sec

It can get away from students quickly
– The Create is heavy and can produce

lots of inertia/momentum (keep this in mind

while trying to get precise distances)

Driving Straight- it is not easy to drive a robot in a straight line.

• Motors are not exactly the same

• The tires may not be aligned well

• One tire has more resistance, etc.

You can adjust this by slowing down and speeding up the motors.

Making Turns

• Have one wheel go faster or slower than the other

• Have one wheel move while the other ones is stopped (friction is less of a factor
when both wheels are moving)

• Have one wheel move forward while the other is moving backwards

-5 -4 -3 -2 -1 0 1 2 3 4 5

ForwardForwardReverseReverse

LET’S MOVE! Materials/Supplies

1. You need a large surface to run the robot on

• Use the floor, a piece of white or light colored foam or poster board or a vinyl

or paper mat as a robot testing track

o You need an area marked as the starting line (a piece of black tape works

well or you can mark it with a black marker)

2. You need an object to navigate to

• Can of soda, foam block, whiteboard eraser, etc. will work

3. A measuring device and a timer will be useful

Soda Can

Starting line (Tape/Marker)

LET’S MOVE!
Activity/mini contests

Using the simple motor function motor(); and msleep();
you can have the students work on fun challenges.

These activities can all be completed using hard coding (“dead
reckoning”) and simple motor control functions without the use
of any sensors. This is a good place to start and will teach the
students how hard it is to be consistent using dead reckoning.

• This is a good time to bring up controlling variables when
they set up their robot- is it the same every time? How
could you make it the same (using a jig or ruler to control
how they set it at the starting line)

Once they have the skills down of forward, backwards, stop, turn
then we can move on and start adding sensors and decision
making into the programs.

Touch the Can

Robots must start on or behind the starting mark and move to the object

with the goal of touching the object in the shortest amount of time

Extensions

• Move the can to various distances

• Make the object smaller and harder to navigate to

• Math- have them measure the distance to the object and time the

robot and then calculate rate/speed

o Speed = Distance/Time

Soda Can
Starting line

Soda Can
Starting line

Closest to the Can

1. Robots must start on or behind the starting mark and move to the object

with the goal of stopping as close to the can as possible without touching it.

• If they touch the can they must start over at the starting line

• Use rulers to measure the distance stopped from the can- make a data

table

• You can use a sheet of paper passed between the robot and can to

determine if it is touching

• You can limit the number of attempts and take the best run or have them

average several runs or add the distances together for a grand total

2. Move the can to various distances and locations

Soda Can
Starting line

Soda Can
Starting line

Closest to/touch the Can and

“Go Home”
1. A variation on touch the can and closest to the can.

2. After stopping closest/touching the can, back the robot up until

touching the starting line

• Move the can to various distances

Soda Can
Starting line

Soda Can
Starting line

Soda Can
Starting line

Circle the Can and

“Go Home”
1. Brings in the concept of turning

• If you touch the can you must start over

• The quickest trip is the winner

• Move the can to various distances

• Make them go clockwise and then counter clockwise

Soda Can
Starting line

Circle the Can(s) and

“Go Home”
Variation on Circle the Can

1. Have them make a figure 8 around two objects

2. Barrel Race (have them go around three cans)

Soda Can
Starting line

Soda Can
Starting line

Park in the Garage

1. Robots must start on or behind the starting mark and park in

the garage (box or tape outline on board)

• Start with the garage straight across from the starting line

o Garage can be roomy and then make it a tight fit

o If they touch the garage they must start over at the starting line

• If they touch the garage they must start over at the starting line

• Move the garage to various distances and locations

Garage
Starting line

Garage

Starting line

Park in the garage and

Miss the Bicycle

“Park in the Garage” variation

o Place an object(s) between the starting line and garage

Garage
Starting line

Garage

Starting line

Walk the Line
Brings in the concept of driving in a straight line

• Robot must move without touching the line (easiest to hardest below)

o You can use one line and have the robot move down the side without touching it

• Make this a time trial-quickest time without touching (faster is harder to control)

o You can make a lane and have the robot drive down it without touching either side.

• Increase difficulty by making the lane narrower

o You can use one line and have the robot straddle it with the goal of running the full

length without either wheel touching the line

Variations on Walk the Line

Same as before only have them stop and go backwards without touching the

line as well

• Add a starting line to begin and a finish line the robot must touch before

backing up

Variations on Walk the Line-

Jousting!
• Robots on opposite sides of the line move towards each other and try to

knock object off of other robot

o Use whatever object is handy

Engineering Point-

Have the students engineer how they attach their lance (new unsharpened

pencils work well) to their robot

Race Track
Brings in the concept of controlled driving

Robot must move within the lane completing the course

• Make this a time trial the fastest to complete the course with no errors

o If you touch the line then you have to start over and the clock keeps running

• You can use a much larger track if desired (taped lanes on the classroom floor work well)

• You can use different lane setups

o The tighter and more numerous the turns the more difficult it is

• Extension- once finished, make them stop and back up all the way to the start

Using sensors with the Create

Goals

• To learn and use the functions for connecting to and moving the Create

• To learn the functions used to access sensors built into the Create

• To learn how to record distance traveled and angle turned and get the value

• To use real distance measurement to compare to sensor measurement for distance

traveled and angle turned.

Preparation

• You will need a charged Create and Link + the serial cable to connect them

• You will need computers with the KISS IDE

• You will need the USB download cable

• A meter stick and protractor or other measuring device

Activity

Follow the slides

Activity 3
Lets use the Create’s built-in sensors!

Use the Create with a Link controller in the cargo bay connected

with a serial cable

Launch the KISS IDE

• Start the KISS IDE by clicking on its icon to get

the welcome screen

• Click on the “New File” icon and

and choose the C, “Hello, World!” template

KISS IDE icon

Select Target

• A Target Selection window will appear

• Pick “USB Target” and the C program template will come up

The C Template: Hello, World!

We will use this

template every

time and simply

delete out what

we don’t want and

add what we want

We use the serial cable to plug into the Link TTL

Serial plug

NOTICE the red mark on the plug (left side) this

corresponds to the red wire in the serial cable 3

1
2

Plugging serial cable into Link

Create connector

Link serial plug

Power connector Correctly plugged in

We use the Create connector (round) end

Plugging serial cable into Create

Create connector

Link serial plug

Power connector

Receptacle may have a cover that

you can pop off to access

The plug is keyed, make sure

you line it up correctly before

plugging it in

Function to get distance traveled

The Create has a built-in sensor that measures distance traveled in mm

– The set_create_distance (); function allows you to reset the
counter

The function get_create_distance (); returns the recorded
value (distance traveled in mm)

set_create_distance(0);//tells the Link to reset the distance to 0

get_create_distance();// gets the distance traveled in mm

How accurate is the

get_create_distance (); ?

Write a program for your robot to move forward for 1m = 100cm
= 1000 mm

Psuedocode (Task Analysis)

// 1. connect to create

// 2. Reset create distance traveled to 0

// 3. Drive forward @ 500mm/second

// 4. Pause program for 2 seconds to give
the robot time to move 1000mm

// 5. stop the motors/create

// 6. print get_create_distance (); to
screen

// 7. disconnect from create

Activity Solution

Checking the distance traveled value

returned with an actual measurement
If you place the Create at a starting line and run the program in a perfect world it
should go 1000mm or 1 m, BUT this isn’t a perfect world

In reality it will go something less (friction, motors are different etc)

• In the previous example our Create printed out it had gone 848mm

• The actual physical measurement with a meter stick was 870 mm

Both were ~ 140mm less than the predicted 1000mm, but you can figure out the differences and
account for this when programming the robot (a data table with conversions would be helpful)

1000 mm or 1 m

Predicted Distance

500mm/second for 2 seconds

Predicted Distance 1000 mm

Actual Distance 843 mm

Function to get angle turned

The Create has a built-in sensor that measures angle turned in degrees

– The set_create_total_angle (); function allows you to reset the
counter

The function get_create_total_angle (); returns the recorded
value (angle turned in degrees)

set_create_total_angle(0);//tells the Link to reset the angle turned to 0

get_create_total_angle();// gets the angle turned in degrees

How accurate is the

get_create_total_angle (); ?

Write a program for your robot to turn 180 degrees

Psuedocode (Task Analysis)

// 1. connect to create

// 2. Reset create total angle turned to 0

// 3. Turn left or counter clockwise

// 4. Pause program for 2 seconds to give
the robot time to turn

// 5. stop the motors/create

// 6. print get_create_total_angle (); to
screen

// 7. disconnect from create

Activity Solution

Checking the total angle turned value

returned with an actual measurement
If you place the Create on a starting line and run the program in a perfect world
it should turn ~180 degrees BUT this often isn’t a perfect world

In reality it may go something less (friction, motors are different etc) or more

• In the previous example our Create printed out it had gone 180 degrees

• The actual physical measurement with a protractor was 182 degrees

With a little work, you can figure out the differences and account for this when programming the
robot (a data table with conversions would be helpful)

* You many need to put a mark on the create so you know where to start (it is hard to keep this
consistent without a mark)

Using the Create bump sensors

Goals

• To learn and use the functions for connecting to and moving the Create

• To learn the functions used to access sensors built into the Create

• To learn how to use the Create’s bump sensors

Preparation

• You will need a charged Create and Link + the serial cable to connect them

• You will need computers with the KISS IDE

• You will need the USB download cable

• You need a solid object for the create to bump into

• In Botball teams use the pvc around the edge of the game board to trigger the

Create’s bump sensors

Activity

Follow the slides

Activity 3
Lets use the Create’s built-in sensors!

Use the Create with a Link controller in the cargo bay connected

with a serial cable

Launch the KISS IDE

• Start the KISS IDE by clicking on its icon to get

the welcome screen

• Click on the “New File” icon and

and choose the C, “Hello, World!” template

KISS IDE icon

Select Target

• A Target Selection window will appear

• Pick “USB Target” and the C program template will come up

The C Template: Hello, World!

We will use this

template every

time and simply

delete out what

we don’t want and

add what we want

We use the serial cable to plug into the Link TTL

Serial plug

NOTICE the red mark on the plug (left side) this

corresponds to the red wire in the serial cable 3

1
2

Plugging serial cable into Link

Create connector

Link serial plug

Power connector Correctly plugged in

We use the Create connector (round) end

Plugging serial cable into Create

Create connector

Link serial plug

Power connector

Receptacle may have a cover that

you can pop off to access

The plug is keyed, make sure

you line it up correctly before

plugging it in

Function to get Create sensor values
By now you should be familiar with the
get_create_total_angle (); and
get_create_distance (); functions

The Create has other built-in sensors you can access
with the get_create_....();

rcliff() lcliff()

lfcliff()rfcliff()

battery_capacity()

lbump()rbump()

lwdrop()rwdrop()

cwdrop()

rcliff() lcliff()

lfcliff()rfcliff()

battery_capacity()

lbump()rbump()

lwdrop()rwdrop()

cwdrop()

right and left bump
(digital touch sensor)

4 cliff sensors
(IR reflectance)

3 drop sensors
(let you know when a

wheel has dropped)

Using a bump sensor?

Write a program for your robot to move forward until the

right bump sensor is pressed

Psuedocode (Task Analysis)

// 1. connect to create

// 2. Check right bump sensor

// 3. Drive forward @ 300mm/second

// 4. Stop the motors/create when bumped

// 6. print “I hit something”

// 7. disconnect from create

Activity Solution

	0.9F Robot Introduction
	1.0F Introductory Kit Overview
	1.1F DemoBot Building Guide
	1.2F Link Overview
	1.3F Introduction & Flow Charts
	1.4F Introduction to Programming Languages and KISS IDE
	1.5F Introduction to Functions & HELP
	1.6F First C Program _Hello World_msleep
	1.7F Using Motor() to move your robot
	1.8F using mav() mrp()to move your robot 1.0
	1.9F writing your own functions
	2.0F Programming your robot to run for a set amount of time
	2.1F First Sensor Start with a light
	2.2F Using Servos
	2.3F Engineering Design Activities
	2.4F Decision making and Sensors
	2.5F if statements and following lines
	2.6F Measuring Distance using the ET
	2.7F Using the Camera
	2.8F Create_ Overview
	2.9F Moving the Create
	3.0F Moving the Create Straight and Spin
	3.1F Create_Distance_Angle
	3.2F Create_Bump_Sensors

