
Sensor	and	Motor	Manual	

Version: Botball 2013

Page 2

Copyright 2013 KISS Institute for Practical Robotics. All rights reserved.

KIPR makes no warranty for the use of its products and assumes no responsibility for any errors which

may appear in this document nor does it make a commitment to update the information contained

herein. KIPR products are not intended for use in medical, life saving or life sustaining applications.

KIPR retains the right to make changes to these specifications at any time, without notice.

BOTBALL
®
, BYO-BOT

®
, BOTGUY, and the BOTGUY design and character are trademarks and/or service

marks of KISS Institute for Practical Robotics and may not be used without express written permission.

LEGO, iRobot, and iRobot Create are registered marks of their respective owners.

The KISS Institute is a 501c3 nonprofit organization. Our mission is to improve the public's

understanding of science, technology, engineering, and math; develop the skills, character, and

aspirations of students; and contribute to the enrichment of our school systems, communities, and the

nation.

Page 3

Page 4

Contents

1. Overview ___________________________ 8

How to Use this Manual ___ 8

What are Motors? ___ 8

What are Sensors? ___ 8

2. Motors _____________________________ 9

How does KIPR LINK sense the motor position? __ 9

What is a tick? ___ 10

CS-60 Continuous Rotation Motor ______________________________ Error! Bookmark not defined.

Performance __ Error! Bookmark not defined.

SG-5010 Continuous Rotation Motor ___ 10

Performance ___ 10

Uses __ 10

KISS-C Motor Library Functions __ 11

Sample Code ___ 11

3. Servos ____________________________ 12

How does KIPR LINK sense the servo position? ___ 12

Servo Precautions ___ 12

SG-5010 Standard Servo__ 13

Performance ___ 13

SG-90 Micro Servo __ 13

Performance ___ 13

Uses __ 13

KISS-C Servo Library Functions ___ 14

Sample Code ___ 14

Page 5

4. Analog Sensors _____________________ 15

KISS-C Analog Sensor Library Functions ___ 15

The Light Sensor __ 16

Performance ___ 16

Description __ 16

Uses__ 16

Sample code ___ 16

The Large Top Hat Sensor __ 17

Performance ___ 17

Description __ 17

Uses__ 17

Sample Code 1 ___ 18

Sample code 2 ___ 18

The Small Top Hat Sensor __ 19

Performance ___ 19

Description __ 19

Uses__ 19

Sample Code 1 ___ 20

Sample code 2 ___ 20

The ET Sensor __ 23

Performance ___ 23

Description __ 23

Uses__ 23

Sample Code ___ 24

The SONAR Sensor __ Error! Bookmark not defined.

Performance __ Error! Bookmark not defined.

Description ___ Error! Bookmark not defined.

Uses___ Error! Bookmark not defined.

Sample Code __ Error! Bookmark not defined.

Page 6

5. Digital Sensors _____________________ 25

KISS-C Digital Sensor Library Functions __ 25

The Slot Sensor ___ 26

Performance ___ 26

Description __ 26

Uses__ 26

Sample Code 1 ___ 26

Sample Code 2 ___ 27

The Large Touch Sensor __ 28

Performance ___ 28

Description __ 28

Uses__ 28

Sample Code ___ 28

The Lever Sensor ___ 29

Performance ___ 29

Description __ 29

Uses__ 29

Sample Code ___ 29

The Small Touch Sensor __ 30

Performance ___ 30

Description __ 30

Uses__ 30

Sample Code ___ 30

6. Accelerometer _____________________ 31

Performance ___ 31

Description __ 31

Uses__ 31

Sample Code ___ 31

Page 7

7. Camera ___________________________ 32

About vision tracking __ 32

Teaching the KIPR LINK Color Channels __ 32

KIPR LINK Vision Tracking Library Functions __ 36

Sample color tracking program if you have a servo ______________________________________ 38

Sample color tracking program if you do not have a servo ________________________________ 39

8. Troubleshooting ____________________ 40

9. Appendices ________________________ 41

Built in Motor Test __ 41

Built in Motor Position Display __ 42

Checking Motor Polarity ___ 43

Built in Servo Test ___ 44

Finding the range of your servos ___ 45

Disabling the pull up resistors on the analog ports manually ______________________________ 46

Disabling the pull up resistors on the analog ports in your program _________________________ 47

KISS-C Library Functions for the KIPR LINK ___ 48

KISS-C Vision Library Functions for the KIPR LINK __ 52

Page 8

1. Overview

How to Use this Manual

This manual is designed to illustrate how to use all of the Botball motors and sensors.

This manual can be read cover to cover as a primer on how to use motors and sensors. Each section

covers one type of device and then provides information about all of the similar devices provided in the

Botball kit.

This manual can also be used as a reference source. If you find yourself stuck on how to use a particular

motor or sensor, you should grab this manual and look up the offending device in the contents and flip

to that page.

What are Motors?

Motors take electrical energy and convert that to rotational mechanical energy. Botball uses two

different types of motors: continuous rotation motors and servos. Continuous rotation motors

constantly spin when electricity is applied. Servos can only rotate 180 degrees. They take electricity and

a signal indication what position to go to.

The KIPR LINK has 4 motor and 4 servo ports. The motor and sensor ports are split, two on each side of

the front of the KIPR LINK.

What are Sensors?

Sensors are devices that quantify measurements into observable signals. For Botball, the sensors will

return a voltage between 0 and 5 volts DC to the KIPR LINK. The KIPR LINK divides that voltage either 2
8

or 2
10

 times and generates a number corresponding to the amount of feedback from the sensor. Two

sensors can return the same value, but mean different things.

The KIPR LINK has 8 analog and 8 digital sensor ports. All of the analog ports can be set to be floating

analog ports either in a program, or manually. Sensors are plugged into the ports on the front of the

KIPR LINK. Make sure that analog sensors are plugged into analog ports and digital sensors are plugged

into digital ports.

The KIPR LINK has a built in accelerometer sensor. The accelerometer can sense acceleration in three

directions.

Page 9

2. Motors

The motors in the Botball kit will plug into any of the motor ports in any direction. When you instruct

the motor to drive forward the motor will turn and a blue light will come on (a red light indicates the

motor is being driven in reverse). If the motor is turning in the direction opposite of which you desire,

unplug the motor, rotate the connector 180 degrees and plug the connector back in.

The motor ports run at 6V with a max current draw of 1A per motor port. Each group of ports (0 and 1,

2 and 3) is controlled by a single h-bridge, so if you are going to be using close to 1A per motor, plug

them into ports controlled by different h-bridges (i.e. 0 and 3) to prolong the life of your h-bridges.

How does the KIPR LINK sense the motor position?

The KIPR LINK uses a closed loop back EMF PID system. The closed loop means that the KIPR LINK is

monitoring the motor’s position. The KIPR LINK drives the motors with PWM commands. PWM stands

for Pulse Width Modulation. This is how you change the speed of the motor. Giving the motor full

voltage drives it a full speed and full power. Giving the motor half the voltage gives it half the speed and

half the power. Pulsing full power at 50% duty cycle drives the motor at full power at half speed, but

also means that the motor is only being powered 50% of the time. When the shaft is turned the motor

will generate power. The KIPR LINK can measure the power and determine the motor’s speed based on

the amount of power generated in the off cycle, this is called back EMF. PID stands for Proportional

Integral Derivative Control. The PID helps tune the KIPR LINK to the small imperfections in the motor

giving better control over the PWM functions.

Page 10

What is a tick?

A tick is the smallest measureable amount the motor can turn. Since the KIPR LINK uses back EMF to

measure the motor position, the number of tics per motor is limited by the physical properties of the

motor and any internal gearing. The continuous rotation servo motors have about 800 ticks per

revolution of the servo horn.

SG-5010 Continuous Rotation Motor

Performance

Torque: 156oz in

Speed @ 60°: 0.11 sec

Uses

Usually motors are used for driving the movement of the robot. There are several different styles of

driving a robot, but the simplest and most common is the two wheel direct drive. The continuous

rotation motors provide plenty of torque and adequate speed for moving a robot around. For this set

up, one wheel is mounted to a motor on one side of the robot and the second wheel is mounted to a

motor on the opposite side. There is a skid or castor on the front, back or both ends of the robot for

stability. This set up is simple because to drive forward, you tell the motors to drive forward, and

likewise for reverse. Turning is simple as well, drive one motor forward and one motor backwards and

the robot will turn about the midpoint between the wheels. By driving both motors forward at different

speeds your robot will drive in an arc.

You can test the polarity of your motors before running any code (see Appendix).

Page 11

KISS-C Motor Library Functions

See Appendix for complete list

motor(<motor#>,<power>)

Turns on a motor at a scaled PWM percentage. Power levels range from 100 (full forward) to -100 (full

backward).

mav(<motor#>,<velocity>)

Move At Velocity moves a motor at a velocity indefinitely. Velocities range from -1000 to 1000 ticks per

second. The MAV command will try to move the motor at a

ao()

 All Off turns off power to all motor ports.

Sample Code

/*This program drives a two wheeled direct drive ro bot
forward for 3 seconds, stops, turns in place for ha lf a
second, and stops for good. The motors are plugged into
ports 0 and 3 so that the robot moves forward when driven
forward. If the robot turns in place or drives bac kwards
at the beginning, unplug the offending motor plug a nd
rotate it 180 degrees and plug it back in.*/

int main(){
 motor(0,100); //turn on motor in port 0 forward
 motor(3,100); //turn on motor in port 3 forward
 msleep(3000); //wait for 3 seconds
 ao(); //turn off both motors
 mav(0,100); //turn on motor in port 0 forward
 mav(3,-100); //turn on motor in port 3 backward
 msleep(500); //wait for 0.5 seconds
 ao(); //turn off both motors
}

Page 12

3. Servos

Servos plug in to the servo ports on the front of the KIPR LINK. The arrows used above represent the

most common coloring for servo cables: ground is black or brown, positive is red, and signal is yellow or

orange. The servos operate at 6 V.

How does the KIPR LINK sense the servo position?

A servo has a control board inside it that controls the position. Inside the servo there is a physical

rotation sensor that senses the current servo position. A servo is provided an electrical pulse that

instructs the servo where to be positioned. The servo will try to go to and stay at the set position until

instructed otherwise or powered down. A standard servo has a range of about 180 degrees and 2048

positions in that range it can be set to.

Servo Precautions

The servo will try to get to the position it is set to even if it means straining or breaking the servo. Make

sure to not exceed the max torque limit of the servo, or damage will occur. When you first call the

enable_servo() command, if you have not specified a position, all servos will go to the middle position

(1024).

Page 13

SG-5010 Standard Servo

Performance

Torque: 156oz in

Speed @ 60°: 0.11 sec

SG-90 Micro Servo

Performance

Torque: 22oz in

Speed @ 60°: 0.11 sec

Uses

Servos are typically used in arms, claws, or other devices that require high precision and repeatability.

After setting a servo position, the program needs to wait for the servo to get to the desired position.

Since the servo has mechanical stops at 0 and 180 degrees, sometimes it is possible to “overdrive” a

servo. This means the mechanical stops are preventing the servo from reaching the desired position.

Overdriving causes the servo to buzz or hum and can cause permanent damage to the servo. You

should change the position you have set it to so that it does not buzz. A quiet servo is a happy servo.

See the Appendix for more information about finding your servo’s range.

Page 14

KISS-C Servo Library Functions

See Appendix for complete list

enable_servos()

Enables power to the servo ports. This must be called before servos will move. When this function is

called, the servo will default to position 1024 unless instructed to move elsewhere before enable_servos()

is called.

set_servo_position(<port#>, <position>)

Moves a servo plugged in a port to a position. Position ranges from 0 to 2047. The servo will immediately

move to position, unless impeded by external force. Call the enable_servos() function before using this

function.

Sample Code

 /*This program moves two servos. Servos need to be plugged
into ports 0 and 3. The program presets servo 0 to position
150. Then the program waits for the black button t o be
pushed. Then it enables servos, servo 0 goes to po sition
150 and servo 3 goes to 1900. Then servo 3 goes to 1900.
Finally servo 0 goes to 1900 and servo 3 goes to 15 0 and the
program ends. See appendix for finding your servo’s range.

int main(){
 set_servo_position(0,150); //preset port 0 to 150
 printf(“servo 0 at position 0\n”);
 printf(“press black button to continue\n”);

while (!side_button()){} //wait for side button
 enable_servos(); //enable the servos
 msleep(1000); //wait for servo to move

set_servo_position(3,1900); //move port 3 to 1900
 msleep(1000); //wait for servo to move
 set_servo_position(0,1900); //move port 0 to 1900
 set_servo_position(3,150); //move port 3 to 150
 msleep(3000); //wait for servos to move
 disable_servos(); //power down servos
}

Page 15

4. Analog Sensors

Botball sensors are “keyed” so that there is only one orientation that all of the pins will be in holes.

Analog sensors can have two or three wires. In an analog sensor the resistance between the SEN and GND lines is

varied. The third wire is connected to VCC which powers the sensor.

Analog sensors will only return a good value if plugged into an analog port. The KIPR LINK can return the analog

value in either a 10 bit or 8 bit format. The 10 bit format is four times more accurate than the 8 bit format.

KISS-C Analog Sensor Library Functions

analog10(<port#>)

Returns the 10 bit analog value of the port (a value in the range 0-1023). Analog ports are numbered 0-7.

analog(<port#>)

Returns the8 bit analog value of the port (a value in the range 0-255). Analog ports are numbered 0-7.

set_analog_pullup(<port#>,<state>)

This function is used to set whether or not the analog ports are set to floating points or to pullup resistors.

Passing a 0 for <state> sets the corresponding port to floating. Please note that all sensor ports are set to non-

floating when the KIPR LINK is rebooted or when a program exits. You only need to use this function if you are

using floating point sensors, like the ET sensor. When used, follow this statement with a short sleep command to

allow time for the change to happen.

Page 16

The Light Sensor

Performance

Angular response: 20 degrees

Light sensitivity wavelength: 880 nm

Description

The light sensor is a variable resistor. Larger amounts of light increase the resistance of the sensor and

the KIPR LINK reports a low value.

Uses

The light sensor is used to start Botball robots at the beginning of the game. Several light sensors can be

used in an array to track changes in light, or to navigate a robot in relation to a fixed light source.

Sample code

 /*This program runs the light calibration function. You
need a light sensor plugged into port 0 and a light to
shine at the light sensor. Follow the on screen
instructions to run the calibration code. Remember low
sensor values are light on and high values are ligh t
off. After the calibration, the KIPR LINK beeps,
prints a message and beeps again. This program can also
be run in the simulator.*/

int main()
{
 wait_for_light(0);

// wait for light sub routine using port 0
 beep();
 display_clear();
 printf("Running Code\n");
 beep();
}

Page 17

The Large Top Hat Sensor

Performance

Maximum detection distance: 15mm

Sensitivity wavelength: 940-850 nm

Description

The “Top Hat” sensor gets its name from the shape of the sensor. This sensor is really a short range

reflectance sensor. There is an IR emitter and an IR collector in this sensor. The IR emitter sends out IR

light and the IR emitter measures how much is reflected back.

Uses

This sensor has two uses. The first is as a line detector. Black materials typically absorb IR and reflect

very little IR back, and white materials typically absorb little IR and reflect most IR back. If this sensor is

mounted at a fixed height above a surface, it is easy to distinguish a black line from a white surface. The

second use is as a short range distance sensor. Be careful, as sometimes black objects close up look like

white objects far away. The Top Hat sensor works best when calibrated to black and white.

Amount of IR reflected back depends on surface texture, color and distance to surface. (See below)

Page 18

Sample Code 1

Sample code 2

/*This program demonstrates how to follow a line wi th a top hat
sensor. This is for a robot with the left motor in port 0, right
motor in port 3 and a top hat sensor in port 0 and mounted at
the front of the robot. This program uses bang-bang control. You
will need to adjust the threshold value to work for you (here it
is 512, right in the middle)*/

int main(){
 while (1){ //loop forever
 if (analog10(0)>=512){ //if the top hat sees light color
 mav(0,750); //left motor fast
 mav(3,100); //right motor slow
 }
 if (analog10(0)<512){ //if the top hat sees dark color
 mav(0,100); //left motor slow
 mav(3,750); //right motor fast
 }
 }
}

/*This program shows how to use a Top Hat sensor as a distance
sensor. This program drive motor 0 forward until th e Top Hat
sensor in port 15 is triggered. If the sensor beco mes un
triggered, the motor will move forward again. You c an change 512
to be the distance you want to detect*/

int main()
{
 while (1){ //loop forever
 fd(0); //drive motor
 while (analog10(0)>512){ //while sensor detects an object
 ao();} //stop motor
 }
}

Page 19

The Small Top Hat Sensor

Performance

Maximum detection distance: 12mm

Light sensitivity wavelength: 940-850 nm

Description

The small “Top Hat” sensor gets its name from the shape of its big brother sensor. Both sensors work

the same, but this is a smaller version with a shorter range. This sensor is really a short range

reflectance sensor. There is an IR emitter and an IR collector in this sensor. The IR emitter sends out IR

light and the IR emitter measures how much is reflected back.

Uses

This sensor has two uses. The first is as a line detector. Black materials typically absorb IR and reflect

very little IR back, and white materials typically absorb little IR and reflect most IR back. If this sensor is

mounted at a fixed height above a surface, it is easy to distinguish a black line from a white surface. The

second use is as a short range distance sensor. Be careful, as sometimes black objects close up look like

white objects far away. The Top Hat sensor works best when calibrated to black and white.

Amount of IR reflected back depends on surface texture, color and distance to surface. (See below)

Page 20

Sample Code 1

Sample code 2

/*This program demonstrates how to follow a line wi th a top hat
sensor. This is for a robot with the left motor in port 0, right
motor in port 3 and a top hat sensor in port 0 and mounted at
the front of the robot. This program uses bang-bang control. You
will need to adjust the threshold value to work for you (here it
is 512, right in the middle)*/

int main(){
 while (1){ //loop forever
 if (analog10(0)>=512){ //if the top hat sees light color
 mav(0,750); //left motor fast
 mav(3,100); //right motor slow
 }
 if (analog10(0)<512){ //if the top hat sees dark color
 mav(0,100); //left motor slow
 mav(3,750); //right motor fast
 }
 }
}

/*This program shows how to use a Top Hat sensor as a distance
sensor. This program drive motor 0 forward until th e Top Hat
sensor in port 15 is triggered. If the sensor beco mes un
triggered, the motor will move forward again. You c an change 512
to be the distance you want to detect*/

int main()
{
 while (1){ //loop forever
 fd(0); //drive motor
 while (analog10(0)>512){ //while sensor detects an object
 ao();} //stop motor
 }
}

Page 21

The Linear Slide Sensor

Performance

Slide Distance: 45mm

Maximum Resistance: 10K Ω

Description

The linear slide sensor is a linear variable resistance sensor. The farther the switch is moved the greater

the resistance. This sensor can be used to monitor linear motion on a small scale. The sensor value is

directly proportional to the distance moved. This sensor reads 0 when the slider is closest to the wire

and 1024 at the other side. This sensor is similar in function to the rotary sensor. The examples are

interchangeable.

Uses

This sensor can be used to monitor linear motion on a small scale.

Sample Code

/*This program shows how to use a Linear Slide Sens or or a
Rotary Sensor in port 0 to move a servo. This progr am sets servo
0 equal to the returned sensor port 0 value.*/

int main()
{
 while (1){ //loop forever
 set_servo_position(0,analog10(0)*2);
 //slide position roughly corresponds to servo rot ation
 }
}

Page 22

The Rotary Sensor

Performance

Maximum rotation: 180 degrees

Maximum Resistance: 1K Ω

Description

The rotary sensor is a rotationally variable resistance sensor. The farther the knob is rotated the greater

the resistance. This sensor can be used to monitor rotation of 180 degrees or less. The sensor value is

directly proportional to the angle rotated. This sensor reads 0 when turned all the way counter

clockwise and 1024 when turned all the way clockwise. This sensor is similar in function to the linear

slide sensor. The examples are interchangeable.

Uses

This sensor can be used to monitor rotation of objects.

Sample Code

/*This program shows how to use a Linear Slide Sens or or a
Rotary Sensor in port 0 to move a servo. This progr am sets servo
0 equal to the returned sensor port 0 value.*/

int main()
{
 while (1){ //loop forever
 set_servo_position(0,analog10(0)*2);
 //knob rotation roughly corresponds to servo rota tion
 }
}

Page 23

The ET Sensor

Performance

Maximum detection distance: 80cm

Light sensitivity wavelength: 940-800 nm

Description

The “ET” sensor gets its name from the shape of the sensor resembling a famous movie Extra Terrestrial.

This sensor works by sending out a modulated frequency IR beam and measures the angle the reflected

IR light returns at and triangulates the distance to an object. Because of the modulated frequency, this

sensor is less susceptible to error due to changing lighting conditions.

Uses

!FLOATING PORT! See appendices on setting a port to floating!

This sensor makes a great medium range distance sensor. The sensor reads the highest value when it

detects an object at 5cm. The value decreases if your object gets closer or farther away (See below).

One way to fix that is to mount the sensor in such a way that nothing can get closer than 5cm.

Page 24

Sample Code

/*This program demonstrates how to use the ET for
sensing distances. This program uses an ET in port 0
and motors in ports 0 and 3. The robot drives forwa rd
until it detects an object. If the object gets clos er,
the robot backs up, if the object gets further away ,
the robot moves closer. When using this type of
programming watch out for dead zones (where the sen sor
values do nothing).*/

int main(){

set_each_analog_state(1,0,0,0,0,0,0,0);
//set port 0 to floating
sleep(0.02); //wait for state to change
while (1){ //loop forever

if (analog10(0)>512){ //if too close
bk(0); //back up
bk(3);

}
if (analog10(0)<=512){ //if too far away

fd(0); //get closer
fd(3);

}
}

}

Page 25

5. Digital Sensors

Sensors are “keyed” so that there is only one orientation that all of the pins will be in holes.

Digital sensors typically only have two wires and are wired such that when the sensor is triggered the SEN and GND

lines complete a circuit.

Digital sensors can be plugged into either an analog or digital port. If a digital sensor is used in an analog port the

value returned will be either 0 or 255 (instead of 1 or 0).

KISS-C Digital Sensor Library Functions

digital(<port#>)

Returns 0 if the switch attached to the port is open and returns 1 if the switch is closed. Digital ports are

numbered 8-15.

analog(<port#>)

 Returns 0 if the switch attached to the port is open and returns 255 if the switch is closed. This is useful if

you run out of digital ports.

Page 26

The Slot Sensor

Performance

Sensitivity wavelength: 940-850 nm

Description

This sensor is an optical slot sensor. On one side of the U there is a IR emitter and on the other side a IR

detector. The sensor is triggered when the sensor beam is broken and the IR detector does not receive

a signal. Be careful when using this sensor because some objects do not block IR light.

Uses

This sensor has two main uses. The first is as an encoder. An encoder attaches a slotted wheel to the

driven wheel. The slot sensor records each time a slot goes by. The more slots the slotted wheel has,

the higher the resolution of the encoder. Encoders are used to passively measure if a wheel is turning,

or slipping. The second main use is as a limit detector. The sensor is used to detect if a moving part is

breaking the beam indicating that the moving part has moved to where it was intended.

Sample Code 1

Page 27

Sample Code 2

Page 28

The Large Touch Sensor

Performance

Life Expectancy: 100,000 cycles

Actuation Force: 160 ± 50 gf

Description

The touch sensor is a mechanical switch. Pressing the switch brings two contacts together completing

the circuit. Because of the way this sensor works, it is either on (1) of off (0).

Uses

This sensor is used to detect if the robot is in physical contact with something, like a bumper.

Sample Code

Page 29

The Lever Sensor

Performance

Life Expectancy: 50,000 cycles

Actuation Force: 5Gms. max.

Description

The touch sensor is a mechanical switch. Pressing the switch brings two contacts together completing

the circuit. Because of the way this sensor works, it is either on (1) of off (0).

Uses

This sensor is used to detect if the robot is in physical contact with something, like a bumper.

Sample Code

Page 30

The Small Touch Sensor

Performance

Life Expectancy: 100,000 cycles

Actuation Force: 160 ± 50 gf

Description

The touch sensor is a mechanical switch. Pressing the switch brings two contacts together completing

the circuit. Because of the way this sensor works, it is either on (1) of off (0).

Uses

This sensor is used to detect if the robot is in physical contact with something, like a bumper.

Sample Code

Page 31

6. Accelerometer

Performance

Range: ±2G for each axis (x,y,z)

Description

A three axis accelerometer is built into the KIPR LINK. It constantly reports the X,Y and Z acceleration.

Acceleration is the change in speed over time, so constant speed has acceleration of 0. A reading of 50

is approximately 1 G.

Uses

The accelerometer is commonly used to sense impacts and KIPR LINK orientation.

Sample Code

Page 32

7. Camera

About vision tracking

The KIPR LINK has a built in color vision tracking system. A USB web camera provides images at a rate of about 25

frames per second to the KIPR LINK using LOW_RES. The KIPR LINK then does real time processing of the images.

The KIPR LINK processes information on the 10 largest blobs on four color channels on each image. A blob is a

group of adjacent pixels that are in the same color channel, or valid QR code using the QR channel. As each frame

is processed the blob information is stored in variables you can accesses to understand your environment. The

color channels are taught to the KIPR LINK. The camera image size at LOW_RES is 160 x 120. The upper left corner

has coordinates (0,0) and the lower right has coordinates (159,119).

Teaching the KIPR LINK Color Channels

F

o

c

u

s

e

d

IR

B

e

a

m

Page 33

While the KIPR LINK is turned off, plug the USB camera into one of the USB A ports in the back of the KIPR LINK as

shown below.

Page 34

Turn on the KIPR LINK and allow it to boot to the main menu. Press the Vision button.

Press the Tracking button.

This pulls up the Vision Interface shown below.

Lens

Page 35

On the top right there are buttons numbered 0-3 indicating the four channels. On the top left there are three

buttons labeled Raw, Trk, and Mat. These stand for Raw camera image, Tracked camera image, and Matched

camera image respectively. The Raw camera image is exactly what the camera sees. The Tracked camera image

shows the pixels that fall into the bounding box area as white. The Matched camera image shows the pixels that

fall into the bounding box area as white, and when the number of touching pixels that fall into the bounding box is

greater than the minimum blob size shows a green bounding box around the blob and displays the centroid as a

green plus.

Teaching the KIPR LINK a color channel is changing the area and the location of the bounding box in the bottom

center to encompass as many of the colors in the object to be tracked as well as limiting the number of non-

tracked colors in the box. The bounding box is controlled by the arrows in the bottom right and the TL and BR

buttons in the bottom right. TL and BR select which corner of the bounding box you are moving (Top Left or

Bottom Right). Due to the nature of the bounding box, the Bottom Right corner is trapped on the right side of the

HSV color selection plane, and the Top Left corner is trapped on the left side.

The HSV Color selection Plane (shown below) is a graphical representation of all of the colors the camera can see.

The Hue value describes the color (i.e. red, yellow, blue), and the Saturation and Value represent how dark or light

the color is (i.e. amout of black or white). Note that a value with a Saturation 224 and Value of 224 are the

brightest (or pure) colors that the camera can see.

Page 36

By default, the color channels are set to be a broad range of four popular (and easy to track) colors. Channel zero

is red, one is yellow, two is green, and three is blue. You should adjust the bounding box for the color models to fit

you specific application, but they give a good starting point.

When adjusting a color channel to your needs, first open the bounding box up so that the entire object you are

tracking is within the bounding box. When the entire object is inside the bounding box start reducing the

bounding box size to reduce the amount of environment being tracked. Note, that you may have to reduce the

amount of your object in the bounding box in order to keep the environment from being tracked. You will

probably not be tracking your whole object, due to inhomogeneous lighting conditions.

KIPR LINK Vision Tracking Library Functions

These are the commonly used functions, for a complete list, see the appendix.

Position Sensing Device

(high value) (low (low value)

Page 37

camera_update()

Processes data for the current frame and make it available to the program. Always call this function

before using any other camera functions so they reference the current data.

track_count(<channel>)

 Returns the number of blobs on a channel. Call camera_update() first.

track_x(<channel>,<number>)

Returns the x coordinate of a blob on a channel. The blobs are ranked from 0 to 9 with 0 being the largest

blob size. Call camera_update() first.

track_y(<channel>,<number>)

Returns the x coordinate of a blob on a channel. The blobs are ranked from 0 to 9 with 0 being the largest

blob size. Call camera_update() first.

Page 38

Sample color tracking program if you have a servo

This sample program is a demo for using the camera on the KIPR LINK if you have a servo. This program tracks an

object on color channel 0 and points the servo at the object. If the object moves left the pointer points left.

Set Up

Attach the camera to the KIPR LINK. You need to set the color model on channel 0 to track an object you can move

in front of the camera (the brighter the better). The servo needs to be set so that the pointer is just at edge of the

camera’s field of view. The servo also needs to be pointed so that when the servo is set to the midpoint (1024) it

points at the center of the camera’s field of view. For extra show use a pointer attached to the servo horn (of a

color that is not in your color model). Finally download the program to the KIPR LINK.

Code

/*This program demonstrates how to use the ET for s ensing distances.
This program uses an ET in port 0 and motors in por ts 0 and 3. The
robot drives forward until it detects an object. If the object gets
closer, the robot backs up, if the object gets furt her away, the
robot moves closer. When using this type of progra mming watch out
for dead zones (where the sensor values do nothing) .*/

int main(){
 set_analog_pullup(0,0); //set port 0 to floating

msleep(20); //wait for state to change
while (1){ //loop forever

 if (analog10(0)>512){ //if too close
 bk(0); //back up
 bk(3);
 }
 if (analog10(0)<=512){ //if too far away
 fd(0); //get closer
 fd(3);
 }
 }
}

Page 39

Sample color tracking program if you do not have a servo

This sample program is a demo for using the camera on the KIPR LINK if you have a servo. This program tracks an

object on color channel 0 and lights up the motor ports that correspond to the object’s location. If the object is in

front of motor port 2 the motor port 2 light turns blue, and if the object moves to in front of motor port 1 the

motor port 2 light turns off and the motor port 1 light comes on.

Set Up

Attach the camera to the KIPR LINK. You need to set the color model on channel 0 to track an object you can move

in front of the camera (the brighter the better, but not blue). The camera needs to be pointed at the ground in

front of the KIPR LINK as close to the front as possible, without including the front of the KIPR LINK. The center of

the camera’s field of vision needs to be aligned with the center of the KIPR LINK as well. Finally, download the

program to the KIPR LINK.

Code

 /*This program shows how to use a slot sensor as an encoder. An
encoder counts the times that a slot passes in fron t of the sensor.
This program uses the slot sensor in port 15 to cou nt the number of
times triggered and prints it to the screen.*/

int main()
{
 int i=0; //counter variable
 while(1){ //loop forever
 while(!digital(15)){} //wait until empty
 while(digital(15)){} //wait until triggered
 i++; //add 1 to the count
 printf("triggered %d times\n" ,i); //print
 }
}

Page 40

8. Troubleshooting
If at any point you need additional help, are uncomfortable completing a troubleshooting step, or there is a

problem you cannot resolve, call Technical Support at (405) 579-4609 between 9AM and 5PM Central Standard

Time, or email support@kipr.org.

Problem Solution

My analog sensor value is only changing a small

amount.

Double check the Sensor and Motor Manual and make

sure that it is not a floating sensor. If it is, make sure

you have enabled the pull up resistor. See Appendix.

My analog sensor is constantly reading a value of 0, or

sometimes 1, but nothing else.

Make sure that your analog sensor is plugged into an

analog sensor port (ports 0-7).

My KIPR LINK was showing up as a com port on my

computer, but now does not.

Unplug the USB cable, save your file and restart your

KIPR Link. Then plug the USB cord back in.

My motor is turning the wrong direction.
Unplug the motor plug, rotate 180 degrees and plug

back in. See Appendix.

Page 41

9. Appendices

Built in Motor Test

The KIPR LINK has a built in motor test page for testing motors without writing code. From the Main

Menu, select the Sensors/Motors Page.

Next select Motors.

Next select Test.

Page 42

Now you will see the Motor Test Page. From here you can change motor ports using the arrows at the

top right, by default it starts on port 0. You can choose to test by Power, Velocity, or Position by

selecting the radio button next to the text. Then you input the desired power, speed, and/or position.

Tapping on the white input box brings up a keypad to enter numbers. Below that, current position is

displayed. There is a clear button in the bottom right that clears the motor position. In the bottom right

there is a Go button. Press this button to start your test.

Built in Motor Position Display

There are two places to view the current motor position. The first is in the Motor Test page (see

Previous), and the second is in the Sensor Port screen. From the Main Menu, select the Sensors/Motors

page.

Page 43

Next select Sensor Ports.

Now you will see the following screen.

The bottom of the screen provides information about current motor positions and currently supplied

motor powers.

Checking Motor Polarity

The KIPR LINK has no way to tell if the motor is driving the robot forward or backward. You will have to

make sure that the motors are plugged in correctly. There are many ways to do this. You can go to the

Motor Test Page (see Previous) and power a motor to make sure it is going in the correct direction. You

can use the Motor Position Display (see Previous) and turn the motor by hand to see if the position

increases (moving forward) or decreases (moving backward). Finally if you give the motor a quick turn,

the LEDs in front of the motor port will light up, blue for moving forward, and red for moving backwards.

If you find your polarity is reversed, you can unplug the motor rotate the plug 180 degrees and plug it

back into the motor port. The motor will now turn in the correct direction.

Page 44

Built in Servo Test

The KIPR LINK has a built in servo test page for testing servos without writing code. From the Main

Menu, select the Sensors/Motors Page.

Next select Servos.

Page 45

Now you will see the Servo Test screen. From here you can change servo ports using the arrows at the

top right, by default it starts on port 0. You set the position of the servo using the left and right arrows

in the lower center of the screen. On the right side you can set the size of the increment the arrows

change the servo position. The update button in the bottom right moves the servo to the current

position. By checking the Automatic box, you will update the servo position each time you change the

position on screen. Finally there is a center button in the bottom left that sets the position to 1024.

When you leave the Servo Test page all servos are disabled.

Finding the range of your servos

Each Servo has a different range of values. While each servo can rotate about 180 degrees, the value

needed to move that amount is different. To find the range of your servo, initially use the servo test

screen to set the servo position to 0. Then slowly increase the value until the servo is no longer over

driven and starts to move back. That is the low value of your servo. Repeat the process starting with

the high value and reducing the value until the servo starts move. This is the range of your servo. You

can calculate the amount of turn per servo tic in degrees by dividing the total angle your servo will

rotate by the high value minus the low value. For example, if your servo will rotate a max of 180

degrees, with a minimum value of 100 and a max value of 1900, then you would get .1 degree per servo

tic (180/[1900-100]). This works well when scaled up. Say you want to turn the servo from the start (0

degrees) to 45 degrees. According to the example calculations, you would send the servo to position

550 (100+[45/.1]). The servo should be at about 45 degrees. Keep in mind that the servo has an

accuracy of ± 1 degree so adjusting the servo in small increments is not possible.

Page 46

Disabling the pull up resistors on the analog ports manually

By default all of the analog pull up resistors are enabled. From the Main Menu, select the

Sensors/Motors page. Note that when the KIPR LINK is reset the pull up resistors are disabled.

Next select Sensor Ports.

Now you will see the following screen.

Page 47

When you touch the box next to an analog port, an X appears in the box letting you know that that

analog port is now set to be a floating port as seen below.

In the previous picture, analog ports 0 and 1 are now set as floating ports and no longer use a 15k pull

up resistor.

Disabling the pull up resistors on the analog ports in your program

By default all of the analog pull up resistors are enabled. Use the following built in function to disable or

enable the pull up resistors.

set_each_analog_state(int a0, int a1, int a2, int a3, int a4, int a5, int a6, int a7);

Each int corresponds to an analog port. To disable a port set the int to be 1; to enable a port, set the

int to be 0. See the example below.

In the example above, port 4 has the pull up resistors disabled. Note that in addition to disabling port 4

you have enabled all of the other ports, so be careful when using this function multiple times. You

should also add a small sleep after this command to allow the states to change as shown above.

/*This program shows how to use a slot sensor as a
limit sensor. This program drive motor 0 forward
until the slot sensor in port 15 is triggered. If
the sensor becomes un triggered, the motor will mov e
forward again.*/

int main()

Page 48

KISS-C Library Functions for the KIPR LINK

(alphabetic order)

a_button [Category: Sensors]

Format: int a_button();

Reads the value (0 or 1) of the A button.

alloff [Category: Motors]

Format: void alloff();

Turns off all motors. ao is a short form for alloff.

analog [Category: Sensors]

Format: int analog(int p);

Returns the value of the sensor installed at the port numbered p. The result is an integer between 0 and

255. The function can be used with analog ports 0 through 7.

analog10 [Category: Sensors]

Format: int analog10(int p);

10-bit version of the analog function. The returned value is in the range 0 to 1023 rather than 0 to 255.

ao [Category: Motors]

Format: void ao();

Turns off all motors.

atan [Category: Math]

Format: float atan(float angle);

Returns the arc tangent of the angle. Angle is specified in radians; the result is in radians.

b_button [Category: Sensors]

Format: int b_button();

Reads the value (0 or 1) of the B button.

beep [Category: Output]

Format: void beep();

Produces a tone. Returns when the tone is finished.

bk [Category: Motors]

Format: void bk(int m);

Turns motor m on full speed in the backward direction.

Example:

bk(1);

black_button [Category: Sensors]

Format: int black_button();

Reads the value (0 or 1) of the Black button on the KIPR LINK (or a period on the simulator).

block_motor_done [Category: Motors]

Format: void block_motor_done(int m);

Function does not return until specified motor completes any executing speed or position control moves.

Example:

mrp(0,500,20000L);

block_motor_done(1);

bmd [Category: Motors]

Format: void bmd(int m);

Function does not return until specified motor completes any executing speed or position control moves.

Example:

mrp(0,500,20000L);

bmd(1);

Page 49

 display_clear [Category: Output]

Format: void KIPR Link_display_clear();

Clear the KIPR LINK display.

clear_motor_position_counter [Category: Motors]

Format: void clear_motor_position_counter(int motor_nbr);

Reset the position counter for the motor specified to 0.

cos [Category: Math]

Format: float cos(float angle);

Returns cosine of angle. Angle is specified in radians; result is in radians.

defer [Category: Processes]

Format: void defer();

Makes a process swap out immediately after the function is called. Useful if a process knows that it will

not need to do any work until the next time around the scheduler loop. defer() is implemented as a C

built-in function.

digital [Category: Sensors]

Format: int digital(int p);

Returns the value of the sensor in sensor port p, as a true/false value (1 for true and 0 for false). Sensors

are expected to be active low, meaning that they are valued at zero volts in the active, or true, state.

Thus the library function returns the inverse of the actual reading from the digital hardware: if the

reading is zero volts or logic zero, the digital() function will return true. Valid for digital ports 8-15.

disable_servos [Category: Servos]

Format: void disable_servos();

Disables the servo motor ports (powers down all servo motors).

enable_servos [Category: Servos]

Format: void enable_servos();

Enables all servo motor ports.

exp10 [Category: Math]

Format: float exp10(float num);

Returns 10 to the num power.

exp [Category: Math]

Format: float exp(float num);

Returns e to the num power.

fd [Category: Motors]

Format: void fd(int m);

Turns motor m on full in the forward direction.

Example:

fd(3);

freeze [Category: Motors]

Format: void freeze(int m);

Freezes motor m (prevents continued motor rotation, in contrast to off, which allows the motor to

"coast").

get_motor_done [Category: Motors]

Format: int get_motor_done(int m);

Returns whether the motor has finished a move with specified position.

get_motor_position_counter [Category: Motors]

Format: int get_motor_position_counter(int m);

Page 50

Returns the current motor position value for motor m (a value which is continually being updated for

each motor using back EMF; a typical discrimination for a given motor is on the order of 1100 position

"ticks" per rotation)

get_servo_position [Category: Servos]

Format: int get_servo_position(int srv);

Returns the position value of the servo in port srv. The value is in the range 0 to 2047. There are 4 servo

ports (0, 1, 2, 3).

kill_process [Category: Processes]

Format: void kill_process(int pid);

The kill_process function is used to destroy processes. Processes are destroyed by passing their process

ID number to kill_process. If the return value is 0, then the process was destroyed. If the return value is 1,

then the process was not found. The following code shows the main process creating a check_sensor

process, and then destroying it one second later:

int main(){

 int pid;

 pid = start_process(check_sensor);

 msleep(1.0);

 kill_process(pid);}

kissSimEnablePause [Category: Simulator]

Format: void kissSimEnablePause();

Will pause the simulation if the space bar is pressed when this is called.

kissSimPause [Category: Simulator]

Format: void kissSimPause();

Will pause the simulation when this is called. Press the space bar to resume.

log10 [Category: Math]

Format: float log10(float num);

Returns the logarithm of num to the base 10.

log [Category: Math]

Format: float log(float num);

Returns the natural logarithm of num.

mav [Category: Motors]

Format: void mav(int m, int vel);

This function is the same as move_at_velocity

motor [Category: Motors]

Format: void motor(int m, int p);

Turns on motor m at scaled PWM duty cycle percentage p. Power levels range from 100 for full on

forward to -100 for full on backward.

 move_at_velocity [Category: Motors]

Format: void move_at_velocity(int m, int vel);

Moves motor m at velocity vel indefinitely. The velocity range is -1000 to 1000 ticks per second.

move_relative_position [Category: Motors]

Format: void move_relative_position(int m, int speed, int pos);

Moves motor m at velocity vel from its current position curr_pos to curr_pos + pos. The speed range is 0

to 1000 ticks per second.

Example:

move_relative_position(1,275,-1100L);

move_to_position [Category: Motors]

Format: void move_to_position(int m, int speed, int pos);

Moves motor m at velocity vel from its current position curr_pos to pos. The speed range is 0 to 1000.

Note that if the motor is already at pos, the motor doesn't move.

Page 51

mrp [Category: Motors]

Format: void mrp(int m, int vel, int pos);

This function is the same as move_relative_position.

mtp [Category: Motors]

Format: void mtp(int m, int vel, int pos);

This function is the same as move_to_position.

msleep [Category: Time]

Format: void msleep(int msec);

Waits for an amount of time equal to or greater than msec milliseconds.

Example:

/*wait for 1.5 seconds */ msleep(1500);

off [Category: Motors]

Format: void off(int m);

Turns off motor m.

Example:

off(1);

power_level [Category: Sensor]

Format: float power_level();

Returns the current power level in volts.

printf [Category: Output]

Format: void printf(char s[], . . .);

Prints the contents of the string referenced by s to the cursor position on the screen.

random [Category: Math]

Format: int random(int m);

Returns a random integer between 0 and some very large number.

run_for [Category: Processes]

Format: void run_for(float sec, void <function_name>);

This function takes a function and runs it for a certain amount of time in seconds. run_for will return

within 1 second of your function exiting, if it exits before the specified time. The variable sec denotes

how many seconds to run the given function.

seconds [Category: Time]

Format: float seconds();

Returns the count of system time in seconds, as a floating point number. Resolution is one millisecond.

set_analog_floats [Category: Sensors]

Format: void set_analog_floats(int mask);

This function uses a number between 0 and 255 to set which port are to be set floating.

set_each_analog_state [Category: Sensors]

Format: void set_each_analog_state(int a0, int a1, int a2, int a3, int a4, int a5, int a6, int a7);

This function is used to set weather or not the analog ports are set to floating points or to pullup

resistors. Passing a 1 sets the corresponding port to floating. Please note that all sensor ports are set to

non-floating when the KIPR LINK is rebooted or when a program exits.

set_pid_gains [Category: Motors]

Format: int set_pid_gains(int motor, int p, int i, int d, int pd, int id, int dd);

This function is used to adjust the weights of the PID control for the motors. The p, i and d parameters

are the numerators for the p, i and d coefficients. The pd, id and dd parameters are their respective

denominators. Thus all of the parameters are integers, but the actual coefficients can be floats. If a

motor is jerky, the p and d terms should be reduced in size. If a motor lags far behind, they should be

increased. The default values are 30,0,-30,70,1,51.

 set_servo_position [Category: Servos]

Page 52

Format: int set_servo_position(int srv, int pos);

Sets the position value of the servo in port srv. The value of pos must be in the range 0 to 2047. There are

4 servo ports (0, 1, 2, 3).

setpwm [Category: Motors]

Format: int setpwm(int m, int dutycycle);

Runs motor m at duty cycle dutycycle (values -100 to 100)

sin [Category: Math]

Format: float sin(float angle);

Returns the sine of angle. angle is specified in radians; result is in radians.

sonar [Category: Sensors]

Format: int sonar();

Returns the approximate distance in mm.

sqrt [Category: Math]

Format: float sqrt(float num);

Returns the square root of num.

start_process [Category: Processes]

Format: int start_process(<function name>);

The start_process function is used to start a process, which then runs in parallel with other active

processes. The system keeps track of each running process by assigning a process ID number to it.

start_process returns the process ID number for each process it starts. The process runs until it finishes

or until it is terminated by kill_process. The following code shows the main process creating a

check_sensor() process, and then destroying it one second later:

int main(){

 int pid;

 pid=start_process(check_sensor());

 msleep(1.0);

 kill_process(pid);}

tan [Category: Math]

Format: float tan(float angle);

Returns the tangent of angle. angle is specified in radians; result is in radians.

KISS-C Vision Library Functions for the KIPR LINK

track_is_new_data_available [Category: Vision API]

Format: int track_is_new_data_available();

Returns 1 if new data is available since the last call of track_update(), 0 if no new data is available.

track_update [Category: Vision API]

Format: void track_update();

Processes tracking data for a new frame and makes it available for retrieval by the track_property() calls

bellow.

track_get_frame [Category: Vision API]

Format: int track_get_frame();

Returns the frame number used to generate the tracking data.

track_count [Category: Vision API]

Page 53

Format: int track_count(int ch);

Returns the number of blobs available for the channel ch, which is a color channel numbered 0 through 3.

track_size [Category: Vision API]

Format: int track_size(int ch, int i);

Returns the size of blob from channel ch (range 0-3), index i (range 0 to track_count(ch)-1) in pixels.

track_x [Category: Vision API]

Format: int track_x(int ch, int i);

Returns the pixel x coordinate of the centroid for the blob from channel ch (range 0-3), index i (range 0 to

track_count(ch)-1).

track_y [Category: Vision API]

Format: int track_y(int ch, int i);

Returns the pixel y coordinate of the centroid for the blob from channel ch (range 0-3), index i (range 0 to

track_count(ch)-1).

track_confidence [Category: Vision API]

Format: int track_confidence(int ch, int i);

Returns the confidence for seeing the blob as a percentage of the blob pixel area/bounding box area

(range 0-100, low numbers bad, high numbers good) for the blob from channel ch (range 0-3), index i

(range 0 to track_count(ch)-1).

Page 54

track_bbox_left [Category: Vision API]

Format: int track_bbox_left(int ch, int i);

Returns the pixel x coordinate of the leftmost pixel for the blob from channel ch (range 0-3), index i (range

0 to track_count(ch)-1).

track_bbox_right [Category: Vision API]

Format: int track_bbox_right(int ch, int i);

Returns the pixel x coordinate of the rightmost pixel for the blob from channel ch (range 0-3), index i

(range 0 to track_count(ch)-1).

track_bbox_top [Category: Vision API]

Format: int track_bbox_top(int ch, int i);

Returns the pixel y coordinate of the topmost pixel for the blob from channel ch (range 0-3), index i (range

0 to track_count(ch)-1).

track_bbox_bottom [Category: Vision API]

Format: int track_bbox_bottom(int ch, int i);

Returns the pixel y coordinate of the bottommost pixel for the blob from channel ch (range 0-3), index i

(range 0 to track_count(ch)-1).

track_bbox_width [Category: Vision API]

Format: int track_bbox_width(int ch, int i);

Returns the pixel x width of the bounding box for the blob from channel ch (range 0-3), index i (range 0 to

track_count(ch)-1). This is equivalent to track_bbox_right - track_bbox_left.

track_bbox_height [Category: Vision API]

Format: int track_bbox_height(int ch, int i);

Returns the pixel y height of the bounding box for the blob from channel ch (range 0-3), index i (range 0 to

track_count(ch)-1). This is equivalent to track_bbox_bottom - track_bbox_top.

track_angle [Category: Vision API]

Format: int track_angle(int ch, int i);

Returns the angle in radians of the major axis for the blob from channel ch (range 0-3), index i (range 0 to

track_count(ch)-1). Zero is horizontal and when the left end is higher than the right end the angle will be

positive. The range is -PI/2 to +PI/2.

track_major_axis [Category: Vision API]

Format: int track_major_axis(int ch, int i);

Returns the length in pixels of the major axis of the bounding ellipse for the blob from channel ch (range

0-3), index i (range 0 to track_count(ch)-1).

track_minor_axis [Category: Vision API]

Format: int track_minor_axis(int ch, int i);

Returns the length in pixels of the minor axis of the bounding ellipse for the blob from channel ch (range

0-3), index i (range 0 to track_count(ch)-1).

