
KIPR Link Manual

Version: BB2014.1.1

Page 2

Copyright 2013 KISS Institute for Practical Robotics. All rights reserved.

KIPR makes no warranty for the use of its products and assumes no responsibility for any errors which

may appear in this document nor does it make a commitment to update the information contained

herein. KIPR products are not intended for use in medical, life saving or life sustaining applications.

KIPR retains the right to make changes to these specifications at any time, without notice.

BOTBALL®, BYO-BOT®, BOTGUY, and the BOTGUY design and character are trademarks and/or service

marks of KISS Institute for Practical Robotics and may not be used without express written permission.

LEGO, iRobot, and iRobot Create are registered marks of their respective owners.

The KISS Institute is a 501-c3 nonprofit organization. Our mission is to improve the public's

understanding of science, technology, engineering, and math; develop the skills, character, and

aspirations of students; and contribute to the enrichment of our school systems, communities, and the

nation.

Page 3

Contents

1. KIPR Link ___________________________ 6

About the KIPR Link ___ 6

KIPR Link Basic Features ___ 6

Input and Output __ 6

Other Features __ 7

Included Hardware ___ 7

KIPR Link Features __ 8

2. Quick Start _________________________ 9

Turning On Your KIPR Link ___ 9

Checking the Firmware Version on Your KIPR Link ___ 9

Installing the KISS Platform on Your Computer - the KISS IDE _______________________________ 10

Mac (OS X 10.4 and higher - 64 bit processors) __ 10

Windows (XP, Vista, or 7) ___ 10

Windows 8 __ 11

Downloading and Running a Program for Your KIPR Link ___________________________________ 12

1. Connect the KIPR Link to your Computer___ 12

2. Launch the KISS IDE ___ 12

3. Create a New Program ___ 12

4. Select the Communications Port ___ 12

5. Edit/Save/Download the Program File __ 13

6. Locate the Program File on the KIPR Link __ 13

7. Compile and Run the Program on the KIPR Link _____________________________________ 13

8. Observe Results on the KIPR Link Display __ 14

3. Programming for the KIPR Link ________ 15

Using the C Programming Language with the KIPR Link and the KISS IDE ______________________ 15

KIPR Link Function Libraries ___ 17

Using Sensors __ 17

KIPR Link Library Functions for Sensors __ 18

Using Servo Motors __ 19

KIPR Link Library Functions for Servo Motors __ 20

Using DC Drive Motors ___ 21

Page 4

KIPR Link Library Functions for DC Motors __ 22

Other Functions Commonly Used With the KIPR Link ___________________________________ 23

4. KIPR Link Vision System ______________ 24

About Color Vision Tracking and QR Codes ___ 24

Setting Up KIPR Link Color Tracking Channels ___ 25

Setting Up a KIPR Link QR Scanning Channel __ 27

Verifying Channel Behavior __ 28

KIPR Link Vision Library Functions __ 28

Sample color tracking program controlling a servo motor __________________________________ 30

Set Up __ 30

Code ___ 31

Sample color tracking program controlling motor lights ___________________________________ 32

Set Up __ 32

Code ___ 33

Sample program for decoding a QR code ___ 34

Code ___ 34

5. Troubleshooting ____________________ 35

6. Appendices ________________________ 38

Updating the KIPR Link Firmware ___ 38

Controlling an iRobot Create with the KIPR Link ___ 39

iRobot Create KIPR Link Library Functions __ 40

Sample Program for Controlling an iRobot Create with the KIPR Link _________________________ 43

Set Up __ 43

Code ___ 43

Writing an iRobot Create Script __ 44

Example ___ 45

Code ___ 45

Sample Program for Using KIPR Link Digital Output to Light an LED __________________________ 48

Setup ___ 48

Code ___ 48

Sample Program Using a Thread for Monitoring a Sensor __________________________________ 49

Code ___ 49

Page 5

File I/O for a USB Flash Drive Plugged into the KIPR Link ___________________________________ 50

Creating your own sensor ___ 50

Tools Needed __ 52

Supplies needed __ 52

Method ___ 52

Creating your own motor ___ 54

Tools Needed __ 54

Supplies needed __ 54

Method ___ 54

Setting the sensor ports for 5V or 3.3V ___ 566

Warning! This modification requires opening your KIPR Link case, which will void your warranty.

KIPR assumes no liability for the accuracy of these instructions and following them is strictly at your

own risk regarding any damage which might occur to either person or equipment employed. ___ 56

KIPR Link Main Library Functions ___ 58

KIPR Link Vision Library Functions __ 67

KIPR Link iRobot Create Library Functions __ 69

Create serial interface functions __ 69

Create configuration functions ___ 70

Create movement functions ___ 70

Create sensor functions __ 70

Create battery functions __ 69

Create built-in script functions ___ 69

LED and music functions __ 69

Page 6

1. KIPR Link

About the KIPR Link

The KIPR Link is a Linux-based robot controller designed by the KISS Institute for Practical Robotics

(KIPR). It is most easily accessed by installing the KISS IDE (Integrated Development Environment) on

your computer, software created and maintained by KIPR to support the KIPR Link.

Featuring significant hardware and usability improvements over its predecessor, the KIPR Link is both a

beginner-friendly choice for newcomers to robotics, and a powerful, feature-rich device that will appeal

to experts.

KIPR Link Basic Features

• GNU/Linux based operating system

• Open-source robot control software

• Integrated color vision system

• 800MHz ARMv5te processor

• Spartan-6 FPGA

• Integrated battery and charge system

• Internal speaker

• 320 x 240 color touch screen

Input and Output

1 - 3 axis 10-bit accelerometer (software

selectable 2/4/8g)

8 - digital I/O ports (hardware selectable 3.3V or

5V)

8 - 3.3V (5V tolerant) 10-bit analog input ports

4 - servo motor ports

4 - PID motors ports with full 10-bit back EMF

and PID motor control

1 - 3.3V (5V tolerant) TTL serial port

2 - USB 2.0 (type A) host ports for connecting

devices

1 - USB Micro-B port to connect to your

computer

1 - physical button

1 - IR emitter

1 - IR receiver

1 - HDMI port

Other Features

• All sensor inputs have software enabled pull

up resistor (digital 47k, analog 15k)

• Motor current up to 1A per port

• Servo ports output 6V

• I2C interface (with additional hardware)

• Arm 7 debug port (with additional

hardware)

• JTAG port

• Vcc maximum current 500mA @3.3V, 1A

@5V

• 7.4V 2000mAh Lithium Polymer battery

pack (2s1p) 8C max discharge

• 1GB micro SD for storage

• Internal 802.11 b/g wifi

Included Hardware

The basic KIPR Link hardware includes the

important that only the supplied charger (or one with the same specifications) is used to charge the KIPR

Link. The KIPR Link should only be charged when under adult supervision and should not be left on

charge unattended. When off, the KIPR Link

the wrong charger may damage the KIPR Link and will void the warranty.

KIPR Link

USB Camera

Page 7

includes the KIPR Link, USB cable, power adapter and USB camera.

important that only the supplied charger (or one with the same specifications) is used to charge the KIPR

Link. The KIPR Link should only be charged when under adult supervision and should not be left on

charge unattended. When off, the KIPR Link should reach full charge within 90 minutes. Charging with

the wrong charger may damage the KIPR Link and will void the warranty.

KIPR Link USB cable
(type A-m

USB Camera AC Power Adapter
 13.5v 1000mA

REGULATED (switching)

cable, power adapter and USB camera. It is

important that only the supplied charger (or one with the same specifications) is used to charge the KIPR

Link. The KIPR Link should only be charged when under adult supervision and should not be left on

should reach full charge within 90 minutes. Charging with

USB cable
microB)

AC Power Adapter
13.5v 1000mA

REGULATED (switching)

Page 8

KIPR Link Features

Color touch screen (320x240 dpi),

WiFi, 2000 mAh LiPo battery,

800mhZ ARMv5te CPU, FPGA,

imbedded Linux

Top View

Front View Side View Side View

Bottom View

Back View

HDMI display port
 speaker side button

power switch IR send/receive

Mounting holes have

Lego Technic compatible

spacing

8 analog ports, 8 digital

I/O ports, 4 motor ports,

4 servo ports

 TTL serial
 micro USB
 (for computer connection)

USB2 ports (flash drive, camera,
mouse, keyboard)

Power input

Page 9

2. Quick Start

Turning On Your KIPR Link

Plug your AC power adapter into the wall and into the back of the KIPR Link. You will see a green

charger present light and a colored charge status light at the power input. Slide the power switch to the

ON position to boot the KIPR Link. The KIPR Link will take 40-45 seconds to boot into the user interface.

When the KIPR Link is fully booted you will see a screen similar to the one below.

Checking the Firmware Version on Your KIPR Link

The Link is controlled by a software component

called the KIPR Link Firmware. The web page at

http://www.kipr.org/kiss-platform-link-firmware

specifies the most recent release, its download link,

and instructions for installing it from a USB flash

drive.

To check the version of the software currently

running on your KIPR Link, boot your KIPR Link and

press the About button at the top of the home

screen.

If the firmware version is out of date, to update your KIPR Link to the latest release go to the above

website, download the zipped firmware image file to your computer, then follow the instructions for

updating firmware, which are given on the web site and are in the Appendices of this manual.

Page 10

Installing the KISS Platform on Your Computer - the KISS IDE

Mac (OS X 10.4 and higher - 64 bit processors)

The current version of the platform for Mac systems may be downloaded from

http://www.kipr.org//kiss-platform-mac-os-x.

First, install the most recent release of Xcode for your version of OS X. You can find the Xcode

installer on your OS X install disks, or download it from the Apple Developer Connection at

http://developer.apple.com (you must register for a free account to login and download the

software).

If you are using OS X 10.8 (Mountain Lion), you will have make a system adjustment to allow the

KISS IDE to run as an unverified app. Directions from Apple Support for doing this are on the web

site http://support.apple.com/kb/HT5290.

Next, double click on KISS-x.x.x.dmg file to mount the disk image. Copy the KISS-C folder in the disk

image to the Applications folder on your Mac. You need to keep the KISS-C application and the

library folders in the same KISS-C folder (programs you write can be kept wherever you wish).

There is no need to install a USB driver; appropriate drivers come with OS X.

Windows (XP, Vista, or 7)

The current version of the platform for Windows systems may be downloaded from

http://www.kipr.org//kiss-platform-windows.

If you are using Windows XP, connect the KIPR Link to the computer using the included USB cable

and turn on the Link. For Windows Vista and Windows 7, it is not necessary connect the Link to your

computer.

Double click on KISS-C installer(KISS-x.x.x.exe). That will open the KISS-C Installation Wizard. Click

Next to begin the installation process. Windows 8 will require you to make some setting changes

first as outlined on the web site http://www.kipr.org//kiss-platform-windows.

On the Choose Components screen, if you haven't done an earlier install that included the driver,

make sure that the Link driver is selected as well as KISS-C, then click Next to choose an install

location. It is recommended that you install KISS-C in the default folder, i.e., the Program Files

folder. Click Install to begin installing KISS-C on your computer.

At the point the driver gets installed you will be prompted that the driver is unsigned. This is

normal, so agree to the install anyway option. In Windows XP, you may be prompted to install the

driver, in which case click Next and then click Next again (search for driver) for Windows XP to find

and install the driver.

KISS-C will be added to your program menu. A KISS-C shortcut will be placed on your desktop.

Page 11

Windows 8

DO NOT PLUG THE KIPR LINK INTO THE COMPUTER UNTIL INSTRUCTED TO DO SO!

The current version of the KISS platform for Windows systems may be downloaded from

http://www.kipr.org//kiss-platform-windows.

Follow the following steps in order to install KISS-C on Windows 8:

1. Boot into Windows 8 normally
2. Move mouse into top right corner and click on the search icon

a. Search for “Settings”
b. Click on Settings
c. Search for “General”
d. Click on General Settings

3. Choose Advanced Startup
a. Click on Restart Now

4. Click on Troubleshoot
5. Click on Advanced Options
6. Click on Startup Settings
7. Click on Restart
8. Choose option 7
9. Log in to Windows 8
10. Plug your KIPR Link into your computer via USB cable
11. Turn on your KIPR Link
12. Install the KISS IDE by double clicking the downloaded KISS-C installer and proceeding in

the same manner for earlier versions of Windows
13. Search for "Device Manager"

a. You should see "Gadget Serial v2.4”
b. Right click on Gadget Serial v2.4 and choose Update Driver Software
c. Then choose to search automatically
d. A low numbered COM port is good (anything less than 100 should work fine)

Page 12

Downloading and Running a Program for Your KIPR Link

1. Connect the KIPR Link to your Computer

Use the supplied USB cable to connect the KIPR Link to your computer and turn in on.

2. Launch the KISS IDE

Click on the KISS IDE icon to launch

the KISS IDE and bring up its

opening screen.

3. Create a New Program

The template selection screen will appear.

Click on the C "Hello, World!"Template to

create a new program to use for testing.

4. Select the Communications Port

The Target Selection dialog will appear.

Select the communications port on your

computer for the KIPR Link (for Windows, it

will normally be the highest numbered port).

Page 13

5. Edit/Save/Download the Program File

The template appears as a tabbed entry on

the IDE where it may be edited, saved,

compiled, and downloaded to the KIPR Link.

Use File..Save As..to save the program to

disk. Compile or Download will

automatically save the program, asking for

a file name if the program hasn't been

saved before. Compile tests whether or not

a program will compile. Download sends

the program file to the KIPR Link without

checking it for errors. The result of the

action is given in the lower left corner of the window. Download the program to verify this works OK.

6. Locate the Program File on the KIPR Link

From the Home screen on the KIPR Link, press

the Programs button. Your program will

appear under the same file name you selected

for it in the IDE. Press on the file name to

highlight it.

7. Compile and Run the Program on the KIPR Link

Press the Run button and the program will

compile, bringing up the compiler report

screen. If the compilation was successful, the

program is now ready to run. Otherwise, any

errors produced by compilation will be

reported here. Press OK to run the program,

or return to step 6 and Run will now execute

the program without recompiling it.

Page 14

8. Observe Results on the KIPR Link Display

From the compiler report screen (if the program

compiled error free), pressing OK will bring up the

console where program output is displayed. If you

go back to step 6 and run the program again, it

will run this time without re-compiling and take

you directly to the console.

If you have successfully completed these steps, then CONGRATULATIONS! You have verified that your

KIPR Link and KISS IDE are ready to use for developing your own programs.

The next section of this guide illustrates how to use the KIPR Link library functions and the KIPR Link user

interface with KIPR motors and sensors.

It is followed by a section that describes how to configure the camera for use with the KIPR Link vision

library functions.

A trouble shooting guide is included that covers common problems users have been known to

encounter in trying to use the KIPR Link.

The appendices provide information of interest to some, but not all users, including a description of how

to update the KIPR Link Firmware and listings of the special program libraries provided for using the KIPR

Link with KIPR motors and sensors, the USB camera, and the iRobot Create module (available from the

KIPR online store at http://botballstore.org/).

Page 15

3. Programming for the KIPR Link

Using the C Programming Language with the KIPR Link and the KISS IDE

The C programming language is the most widely used systems language. It has been adapted for use

with the KIPR Link via specialized function libraries. The C compiler used with the KIPR Link and the KISS

IDE is the ANSI C compiler included with Linux. There are other compiler environments for the KIPR Link

as well which are not discussed here (check with KIPR for the development status of these). The Help ..

Documentation tab for the KISS IDE provides an on-line guide for using C with the KISS IDE and the KIPR

Link. It includes documentation for the specialized function libraries and images of the KIPR motors and

sensors available for the KIPR Link from the KIPR online store. The KISS IDE environment also includes a

simulator for the KIPR Link, not discussed here.

For more information on ANSI C programming pick up an ANSI C programming guide from your local

book store. A recommended beginner’s book is “Absolute Beginner's Guide to C” (2nd Edition) by Greg

Perry. The KISS IDE on-line guide also incorporates a short C tutorial, best suited for those already

familiar with another programming language or who are rusty with C.

To write a C program for the KIPR Link, set up your KIPR Link as described in the Quick Start Guide,

proceeding to the "Edit/Save/Download the Program File" step. Use one of the C templates. Your

program will have a file tab on the KISS IDE interface, which will have a tab labeled "* Untitled" until you

save it, after which the label on the tab will be the file name under which you are saving it (for a C

template, the KISS IDE automatically saves with a ".c" suffix, which the system uses as a signal that the C

compiler is the correct one for the file). Each time you repeat this process, you will get a new file tab.

You can use the tabs to move among several programs, perhaps for an action like copy/paste. The file

that is visible is the one being edited.

Page 16

Edit and add to the template to suit your needs. When you think your program is ready for testing,

press the KISS IDE Compile button to check for compiler errors. If you have not already saved a version

of your program, you will be prompted to name the file and choose a directory to save it in.

Subsequently, the program will be automatically saved to this file when you compile to check for

compiler errors.

Any errors the compiler finds in your program will be displayed in a panel at the bottom of the KISS IDE

window, starting with the first error encountered in the program. If you double click on an error, you will

be taken to the line listed for the error. What needs to be fixed will either be on that line or on one

above it (e.g., you left off a ";" on an earlier line). Since a program error tends to cause errors later in

the program, don't be surprised if correcting the first error listed is all that is needed.

To download your program to the KIPR Link, click the KISS IDE Download button. Since your program

will need to be compiled on the KIPR Link, this action only copies your program to the Programs

directory on the KIPR Link.

The instructions for locating and running your program on the KIPR Link are given in the Quick Start

section above, repeated here for your convenience:

1. To locate your program file, from the Home

screen on the KIPR Link, press the Programs

button. Your program will appear under the

same file name you selected for it in the IDE.

Press on the file name to highlight it.

2. To compile and run your program on the

KIPR Link press the Run button and the

program will compile, bringing up the compiler

report screen. If the compilation was

successful, the program is ready to run.

Otherwise, any errors produced by

compilation will be reported here. Press OK to

run the program, or return to step 6 and Run

will now execute the program without

recompiling it.

Page 17

3. To observe programs results (if the program

compiled error free) pressing OK will bring up

the console where program output is displayed.

If you go back to step 1 and run the program

again, it will run without re-compiling and take

you directly to the console.

KIPR Link Function Libraries

Function libraries are provided in the KIPR Link Firmware which enable programmers to take advantage

of the features of the KIPR Link. Some of the more common functions are presented in the following

sections, and the complete list can be found in the Appendix.

Using Sensors

Any sensors purchased from KIPR will work with the KIPR Link. They are “keyed” so that there is only

one orientation for which all of the pins will be in holes.

Sensor Plug

Orientation

analog ports(0-7) and digital ports (8-15)

SEN

VCC

GND

Page 18

Digital sensors typically only have two wires and are wired such that when the sensor is triggered the

SEN and GND lines complete a circuit. Analog sensors can have two or three wires. For an analog

sensor the resistance between the SEN and GND lines will vary. The third wire is connected to VCC to

power the sensor if the sensor requires a power source in order to operate (e.g., a reflectance sensor

has an IR emitter which has to be powered to work).

The voltage on the KIPR Link from VCC to GND is set to +5V for both digital and analog ports. The voltage

range between SEN and GND is also +5V for both digital and analog ports. The +5V setting is established

by internal jumper settings, and opening the case to change them will void your warranty. It is

suggested that you first contact KIPR Technical Support if you think this is something your application

requires. Instructions for accessing the jumpers are in the appendix as are specifications for creating

your own sensors.

KIPR Link Library Functions for Sensors
The two most basic library functions for using sensors with the KIPR Link are the analog10 and digital

functions.

analog10(<port#>)

Analog sensors produce a varying voltage value as resistance between SEN and GND varies.

analog10 returns the analog value of the port (a value in the range 0-1023). Analog ports are

numbered 0-7. Light sensors and range sensors are examples of sensors you would use in analog

ports. The following example is for a light sensor plugged into analog port 3:

printf("Light sensor reading is %d\n", analog10(3));

digital(<port#>)

Digital sensors operate like a switch, effectively producing a resistance value between SEN and

GND of either none (switch closed) or ∞(switch open). The digital function returns 0 if the

switch is open (∞ resistance) and 1 if the switch is closed (no resistance). The digital ports on

the KIPR Link are numbered 8-15. Touch sensors are typical digital sensors, commonly used for

bumpers or limit switches. The following example is for a button (touch) sensor plugged into

port 8:

if (digital(8)==1)

 printf("button is being pressed\n");

else

 printf("button is not being pressed\n");

The C language prototypes for these two functions are:
 int analog10(int port_no);

 int digital(int port_no);

Page 19

Sensors usually require a pull up resistor to work properly. Each KIPR Link sensor port has a software

selectable pull up resistor, enabled on boot by the KIPR Link Firmware as the default setting. A sensor

such as the "ET" distance sensor available from KIPR may already have a built in pull up resistor. In this

case, the pull up resistor for the port used by the sensor needs to be disabled, which can be done by

using the set_ analog_pullup function provided in the KIPR Link Library. For example, for an ET sensor

plugged into analog port 4
 set_analog_pullup (4,0);

will disable the pull up resistor for port 4. The terminology "floating" is used to describe a port without

a pull up resistor and "pull up" if its pull up resistor is enabled. Since "pull up" is the default setting, any

data read by the analog10 function from an ET sensor in port 4 won't be meaningful until the pull up

resistor for port 4 is disabled.

There are additional functions for sensors in the KIPR Link library, described in the appendices. These

include button functions for the KIPR Link's side button, and for the virtual A, B, C, X, Y, Z buttons on the

program input/output console screen.

Using Servo Motors

Servos plug into the servo ports on the front of the KIPR Link. The arrows used above represent the

most common coloring for servo cables (ground is black, positive is red, and signal is yellow), but yours

may differ. If it does check the pin out to make sure that it is compatible with the KIPR Link before

plugging it in (servos sold through the KIPR online store will always be compatible). The servo ports

operate at 7.2V. Since a servo motor's function is to move to a position and hold it, the motor will

continue to draw significant power to maintain position. As the KIPR Link battery is drained, the

− + S − + S

1

0

3

2

Page 20

available power may fall below the threshold where the servo will function properly. Servos that

mysteriously begin misbehaving are usually symptomatic of a battery in need of recharge.

KIPR Link Library Functions for Servo Motors

Servo motor ports should be disabled when not in use to limit their impact on system power resources.

On boot, servo ports are disabled by default. There are 4 servo ports, labeled 0, 1, 2, 3. The KIPR Link

Library includes functions for managing servo ports as well as functions for operating servo motors. The

basic functions are:

enable_servo(<servo_port#>)

Enables power for the specified servo port. When the port is enabled, the servo motor plugged

into it will move to the last position set for the port, by default 1024, the center point of servo

travel range.

disable_servo(<servo_port#>)

Disables power for the specified servo port. This is useful when you want to conserve battery

life. Your servo motor will be at the mercy of any external forces and will not hold its position

when the port is disabled.

set_servo_position(<port#>, <position>)

Moves the servo motor plugged into the specified port to the specified position. Only position

values between 0 and 2047 are meaningful, and a value within 200 of an end point of the

position range may be unattainable, depending on the servo motor being used. The servo will

immediately move to position, unless impeded by external force or the position is unattainable,

in which case it will continue to draw its maximum power level in trying to reach the position. If

this function is called before the port is enabled, when the port is enabled the servo motor will

move to this position.

Example use of these functions for a servo motor plugged into servo port 2:

set_servo_position(2, 670); // set a position for the servo port

enable_servo(2); // power the port and move the servo

 ... do something else ...
disable_servo(2); // servo no longer needed

The C language prototypes for these three functions are:
 void enable_servo(int servo);

 void disable_servo(int servo);

 int digital(int servo, int position);

There are a few additional, less commonly used functions for servo motors in the KIPR Link library,

described in the appendices.

Page 21

Using DC Drive Motors

The DC drive motors sold through the KIPR online store use a two pronged plug and can be plugged into

the KIPR Link motor ports in either direction. The motor port center hole is not employed. The effect of

reversing the plug is to reverse the motor's − +polarity, which simply reverses motor direction.

To check motor polarity manually rotate the motor to produce back EMF to power the LED light for the

port. It will glow green for one direction and red for the other. By convention green means forward, so

if the light glows red when you rotate the motor in what you want to correspond to forward, reverse the

plug.

When your program runs a function that instructs the motor to move the motor will turn. The motor

ports operate with a max current draw of 1A per motor port, where motor speed is regulated by using

Pulse Width Modulation (PWM) to adjust the average power supplied to the motor. Voltage at full

power is 5V.

Each pair of ports (0 and 1, 2 and 3) is controlled by an H-bridge chip, so if you are going to be using

close to 1A per motor (full throttle), plug your motors into ports controlled by different H-bridges (e.g.,

0 and 2) to limit heat build-up in the chip. The will reduce the incidence of failure for your H-bridge

chips over time and will extend their operational life.

Note that only the outside two pin positions for a motor plug connector are used. The KIPR Link Library

motor functions set motor port polarity − +, lighting the green LED, if the direction is to be forward. If

the motor direct is to be in reverse, motor port polarity is set + −, lighting the red LED. See the appendix

for the specifications on creating your own motor plugs.

1

0

3

2

motor lights 0,1,2,3

Page 22

KIPR Link Library Functions for DC Motors

motor(<motor#>,<power>)

Turns on a motor at a scaled PWM percentage, which will continue until another motor

command is issued. Power levels range from 100 (full forward) to -100 (full backward). PWM

stands for "pulse-width-modulation" and is a more effective way to control DC motor power

than using something like a variable resistor.

mav(<motor#>,<velocity>)

Move At Velocity moves a motor at a specified velocity until another motor command is issued.

The value of the velocity is scaled to range from -1000 to 1000 ticks per second. mav (and a

number of other KIPR Link Library motor commands) uses a more complex motor control

scheme than the static PWM percentage employed by the motor command. To obtain the

specified velocity, mav employs PID (proportional-integral-derivative) gain values and a dynamic

measure of the BEMF ("back electro-motive force") produced by the motor to dynamically

adjust the PWM percentage being applied so that the motor continues moving at the specified

velocity. The BEMF value is periodically refreshed by briefly suspending PWM so that the

motor's back EMF can be read by the KIPR Link.

mrp(<motor#>,<velocity>,<ticks>)

Move Relative Position moves a motor at a specified velocity from its current position to the

current position plus the number of ticks specified. Velocities range from 0 to 1000 ticks per

second. Like mav, mrp uses PID motor control. mrp stops executing when the new position is

reached or when another motor command is issued. The final motor position may be slightly off

due to motor coasting once power is no longer being applied.

bmd(<motor#>)

 If the motor is currently executing a positioning command (such as mrp), bmd (Block Motor

Done) does not return until the positioning command finishes. Note that if the motor is stalled

by some external cause, the effect of this command will be to hang program execution until the

motor is freed.

ao()

 All Off turns off power for all motor ports.

off(<motor#>)

 Turns off power for the specified motor port.

There are a number of additional motor functions in the KIPR Link library, described in the appendices.

Page 23

The C language prototypes for these five functions are:
 void motor(int m,int p);

void mav(int m,int vel);

void mrp(int m,int vel,int ticks);

void bmd(int m);

void ao();

void off(int m);

Other Functions Commonly Used With the KIPR Link

msleep(<milliseconds>)

KIPR Link Library function that pauses the currently executing thread, resuming execution of the

thread after a time equal to or slightly greater than the number of milliseconds specified.

printf(<string>, . . .)

Standard C library function for formatting output directed to standard out (which is the program

output console screen for the KIPR Link). If the string contains % codes then the arguments

after the initial string (the . . . portion of the function's arguments) will be printed in place of the

% codes using the format specified by the matching % code. See the Appendix or consult a C

language reference for a listing of % codes and how they are interpreted for formatting data.

beep()

 KIPR Link Library function that creates a short beep sound.

The C language prototypes for these three functions are:
 void msleep(int msecs);

 int printf(char s[], ...);

 (... represents 0 or more values corresponding to % codes present in s)

 void beep();

Example use of these functions (along with motor functions, motor in motor port 2):
int t=1000, m=2;

mrp(m, 500, 500); // move motor at 500 ticks per second

printf("Running m%d %d mseconds\n",m,p); // use %d for int values

msleep(t); // suspend the current thread for p milliseconds

off(m);// turn off motor

beep(); // beep when thread resumes executing

In 1 second the motor should move 500 ticks. In contrast to using bmd, msleep forces the motor off

after 1 second even if it is short of its target position. The printf output will be
 Running m2 1000 mseconds

For more information on KIPR Link Library functions, consult the on-line documentation under the KISS

IDE Help tab as well as the appendices to this Guide.

Page 24

4. KIPR Link Vision System

About Color Vision Tracking and QR Codes

The KIPR Link Vision System incorporates color vision tracking and QR code identification. A USB web

camera is used to provide images to the KIPR Link at a rate dependent on lighting conditions but

exceeding 6 frames per second. Using the KIPR Link interface, an arbitrary number of camera

configurations containing channels for color vision tracking and/or QR code identification can be

defined.

For color vision tracking, images are processed by the KIPR Link to identify "blobs" matching the color

specification for each color channel in a camera configuration. A blob is a set of contiguous pixels in the

image matching the color specification for the channel.

For each color channel in a selected configuration, the values to be used to identify which pixels in an

image match the desired color for the channel are interactively selected from a color spectrum chart to

provide a color specification for the channel. Live feed from the camera simplifies the process of

determining how much of the spectrum is needed to produce blobs matching the color (e.g., a particular

part of the spectrum might include all pixels that are "reddish" in color for a channel to be used for

identifying red objects). The spectrum values for the channel are retained with the configuration until

the configuration is deleted.

The camera image size is 160 x 120. The upper left corner has coordinates (0,0) and the lower right has

coordinates (159,119). The camera image displayed on the KIPR Link is slightly smaller than the actual

image size.

KIPR Link Vision Library functions are used to select a configuration and obtain information about the

color blobs being identified by its channels, such as bounding box coordinates and pixel density.

In addition to channels for color tracking, a configuration can have channels for identifying QR (Quick

Response) codes. A QR code is essentially a 2-dimensional bar code for compactly representing text

data. KIPR Link Vision Library functions are provided for decoding any QR code in the image.

(0,0)

(159,119)

Page 25

Setting Up KIPR Link Color Tracking Channels

The USB camera plugs into one of the USB (type A) ports on the back of the KIPR Link. Unplugging the

camera while it is being accessed will usually freeze the system, requiring a reboot.

The vision system is accessed from the Settings button on the KIPR

Link Home screen. Pressing the Settings button brings up the KIPR

Link Settings screen.

To set up a color tracking channel

press the Channels button to bring

up the channels specification

screen.

To create a new camera configuration, press the Add button and enter a configuration name. This will

bring the channels specification screen back up, with the new configuration added to the list of defined

configurations. The configuration marked with a star is the current default configuration. Highlight the

camera configuration you want to work on and press the Edit button.

Any channel already defined for the configuration will be listed. Press the Add button to add a channel to

the configuration and select HSV Blob Tracking to make this a color tracking channel. Highlight the channel

to be worked on and press Edit to bring up its HSV specification screen. After Channel 0, any additional

channels added to the configuration will be numbered 1, 2, ...

Page 26

Color definition is based on the HSV color model (Hue-Saturation-Value) where the HSV color selection

panel is organized using two stacked panels across the Hue spectrum:

A rough approximation for the desired HSV values can be achieved graphically by dragging the circled

corners of the pixel selection boxes. For example, if the channel is to be used to locate red blobs, then

dragging the selection corners to the red part of the spectrum will begin producing blue bounding boxes

around reddish colored blobs in the image. When the selection corner is released, to facilitate further

adjustment, the KIPR Link will shift the spectrum to have the current color spectrum selection in the

center (the Hue spectrum cycles back to 0 after 359, so the Hue range may be from higher to lower as

well as lower to higher). Every pixel whose value matches the values within the selection is a color

match. In the image above, note that there is a blue bounding box in the upper left quadrant of the

camera image identifying a red blob.

Hue=0 (rel) Val=0

Saturation (↕) vs. Hue (↔)

Value (↕) vs. Hue (↔)

←
Sa

tu
ra

X
o

n
→

 ←
Satu

raX
o

n
→

←

V
alu

e→

Sat=0

Hue=359 (rel)

Sat=255 Val=255

←
V

al
u

e→

Page 27

After obtaining a rough approximation for a color's range of HSV values, the accuracy can be adjusted

further by selecting the Manual option, which will replace the color spectrum with boxes containing the

current HSV values for the channel. These can be adjusted by using the numeric keypad the interface

brings up when a value is pressed on the KIPR Link's touch display.

Manual adjustment is particularly useful when the color channel needs to discriminate among objects

having related, but distinctive colors, such as the orange and red objects in the above image.

Pressing the Done button reverts the display to the channel listing for the configuration, from where

more channels can be added.

Setting Up a KIPR Link QR Scanning Channel

When a channel is added to a configuration, it's type is specified either for HSV Blob Tracking or QR Code

Scanner. There is no additional specification required for QR scanning. The channel type is identified by

a different icon for QR codes than for color tracking. A sample program is given below that illustrates

how a scanned QR code is decoded.

Page 28

Verifying Channel Behavior

From the main screen, if the Motors and Sensors button is pressed, one of the options is for the Camera.

If pressed this will show the bounding boxes for the channels in the default configuration, with a

different bounding box color for each channel (QR codes boxed in black, Channel 0 blobs boxed in blue,

etc).

The default configuration is marked with a "star" and can be changed

to any other configuration listed by highlighting the configuration and

pressing the Default button.

KIPR Link Vision Library Functions

These are commonly used vision functions, for a complete list see the appendix.

camera_open(<resolution>)

Opens the camera using the currently loaded configuration. For most users, the default

configuration (as specified by settings .. channels .. default) is used. For another configuration to

be employed, it has to be loaded (see camera_load_config). A resolution of LOW_RES,

MED_RES, or HIGH_RES must be specified. For most purposes, LOW_RES will suffice and has the

least impact on system performance.

camera_close()

Closes the current camera instance and clears its presence from system resources.

Page 29

camera_update()

Once the camera has been instantiated using camera_open, each call to camera_update will

retrieve and process the current camera image. Always call this function before using any other

camera functions so they reference the current data.

get_object_count(<channel>)

Returns the number of objects for a channel as determined by the most recent

camera_update(). Objects for a channel are ranked numerically with 0 being the largest in area.

get_object_bbox(<channel>,<number>)

Returns a compound data type rectangle with component values determined by the most recent

camera_update. The rectangle data type has 4 components:

ulx - the upper left x coordinate of the object's bounding box

uly - the upper left y coordinate of the object's bounding box

width - the width of the object's bounding box

height - the height of the object's bounding box

get_object_center(<channel>,<number>)

Returns a compound data type point2 with component values determined by the most recent

camera_update. The point 2 data type has 2 components:

x - the x-coordinate of the center

y - the y-coordinate of the center

For a QR code channel the following two functions are used for QR decoding:

get_object_data(<channel>,<number>)

Returns a pointer to the sequence of character data for the QR code. If the channel is invalid, or
there is no object, or there is no data, 0 is returned. The data is not guaranteed to be null
terminated, but can be accessed using array notation; for example,

get_object_data(0,0)[0], get_object_data(0,0)[1], etc.
The pointer returned by get_object_data will be valid until camera_update is called again, at
which point get_object_data will return a new pointer.

get_object_data_length(<channel>,<number>)

Returns the number of characters associated with the QR code on a QR channel. If the channel
is invalid, or there is no object, or there is no data, 0 is returned.

Page 30

Sample color tracking program controlling a servo motor

This sample program is a demo for using the camera on the KIPR Link to control a servo motor. If you
don't have a servo motor, skip to the next example. Servo motors come with "horns" designed to fit on
the motor shaft. Choose one that will serve as a pointing device and attach it to your servo. The action
of this program is to turn the servo in response to an object on color Channel 0, in effect rotating the
servo to continue to point at the object as it is moved back and forth in front of the camera

Set Up

Attach the camera to your KIPR Link and plug your servo into servo port 0. You need to set the color
model on Channel 0 to track an object you can move in front of the camera (usually the more saturated
with color the better). The servo needs to be pointed so that when at its midpoint position (1024) it
points at the center of the camera’s field of view.

 Motors can be directly manipulated from the KIPR Link interface, which for servos provides a means for
determining position settings to use in a program. In this case, we only need to orient the servo. From
the Home Screen press the Motors and Sensors button to bring up the device selection screen from
which if you select Servos you will get the servo test screen. Press Port 0, enter 1024, and press Enable
to position the servo.

Press Back to return to the device selection screen (first press if you want to turn the servo off). This
time press Camera to get the camera view on the screen so you can align the servo to be pointing at the
center of the camera's field of view. For a better effect, you might want to attach a pointer to the servo
horn (of a different color than for your color model).

You are now ready to run the program below. Reminder: Use the KISS IDE Compile button to test the
program before downloading and running it on your KIPR Link.

Page 31

Code

 Note: For improved readability as the program executes, the Link specific function display_printf is
used in place of printf, since printf will scroll the screen once it has reached the last row of the display.

display_printf(<col>, <row>, <string>, . . .)

Performs a standard printf starting at screen location col, row, limited to columns 0 through 41
and rows 0 through 9 (fewer rows if extra buttons are turned on). The effect is a print in place
to the screen. Use of '\n' in the string will distort the outcome. Excess text for any row is
truncated.

/* For a servo plugged into port 0 and initially centered on the

camera's field of vision, this program rotates the servo to keep it

pointing towards the largest object for color channel 0 as the object is

moved about */

int main() {

 int offset, x, y;

 enable_servo(0); // enable servo

 camera_open(LOW_RES); // activate camera

 camera_update(); // get most recent camera image and process it

 while(side_button() == 0) {

 x = get_object_center(0,0).x; // get image center x data

 y = get_object_center(0,0).y; // and y data

 if(get_object_count(0) > 0) { // there is a blob

 display_printf(0,1,"Center of largest blod: (%d,%d) ",x,y);

 offset=5*(x-80); // amount to deviate servo from center

 set_servo_position(0,1024+offset);

 }

 else

 display_printf(0,1,"No object in sight ");

 msleep(200); // don't rush print statement update

 camera_update(); // get new image data before repeating

 }

 disable_servos();

 camera_close();

 printf("All done\n");

}

Page 32

Sample color tracking program controlling motor lights

This sample program is a demo that tracks an object on color channel 0 and lights up the motor ports
that correspond to the object’s location. Each motor port corresponds to one-fourth of the screen. If
the object is on the lower half of the screen a red motor light will come on. In on the upper half a green
motor light will come on.

Set Up

Attach the camera to the KIPR Link. You need to set the color model on channel 0 to track an object you
can move in front of the camera (the more saturated the color, the better). For best results point the
camera horizontally at a grid marked off on a piece of paper so you can see the accuracy of the
behavior. The center of the camera’s field of vision needs to be aligned with the center of the grid.
Finally, test and download the program to the KIPR Link.

Green 0 Green 1 Green 2 Green 3

Red 0 Red 1 Red 2 Red 3

Page 33

Code

/* For this program, point the camera at an 8-quadrant grid that fills

the KIPR Link screen. Each motor light corresponds to an area of the grid

in the pattern

 G G G G

 R R R R

i.e. if the center of the largest object on channel 0 is over a particular

grid location, that motor light will be turned on */

int main()

 {

 int x, y, quad, xMax = 160, yMax = 120;

 camera_open(LOW_RES); // activate camera

 camera_update(); // get most recent camera image and process it

 while (side_button()==0) {

 x = get_object_center(0,0).x; // get image center x data

 y = get_object_center(0,0).y; // and y data

 if (get_object_count(0) > 0) { // there is a blob in view

 display_printf(0,1,"Center of largest blob: (%d,%d) ",x,y);

 ao(); // turn off all motor lights

 // determine the horizontal quadrant to be lighted

 if (x < xMax/4) {

 quad = 0;}

 else if (x >= xMax/4 && x < xMax/2) {

 quad = 1;}

 else if (x >= xMax/2 && x < 3*xMax/4) {

 quad = 2;}

 else if (x >= 3*xMax/4) {

 quad = 3;}

 if (y < yMax/2) { // green row

 fd(quad); // quad's green motor light on

 display_printf(0,2,"Green quadrant %d ", quad);

 }

 else { // red row

 bk(quad); // quad's red motor light on

 display_printf(0,2,"Red quadrant %d ", quad);

 }

 }

 else {

 display_printf(0,1,"No object in sight ");

 ao(); // lights off

 }

 msleep(200); // don't rush print statement update

 camera_update(); // get new image data before repeating

 }

 ao(); // clean up

 camera_close();

}

Page 34

Sample program for decoding a QR code

This sample program is a demo that uses QR scanning Channel 1 for detecting and decoding a QR code
when one is present in the camera field of view.

From the Motors and Sensors .. Camera screen,
aim your camera at this code and verify it is being seen on Channel 1.

Now compile and run the sample program to find out what the QR data is.

Code

// Assume channel 1 is for identifying QR codes

// If a QR code is found, it is translated

int main() {

 int i, lngth;

 camera_open(LOW_RES); // activate camera

 camera_update(); // get most recent camera image and process it

 while(side_button()==0) {

 if (get_object_count(1) > 0) { // there is a QR code in view

 display_printf(0,1,"QR code: ");

 lngth = get_object_data_length(1,0);

 // print QR code letter by letter until end of data

 for(i=0; i < lngth; i++) {

 display_printf(9+i,1,"%c", get_object_data(1,0)[i]);

 }

 }

 else {

 display_printf(0,1,"No QR code detected ");

 }

 msleep(200); // don't rush print statement update

 camera_update(); // get new image data before repeating

 }

}

Page 35

5. Troubleshooting
If at any point you need additional help, are uncomfortable completing a troubleshooting step, or there

is a problem you cannot resolve, call KIPR Technical Support at (405) 579-4609 between 9AM and 5PM

Central Standard Time, or email support@kipr.org.

Problem Solution

My Link does not turn on.

Plug your KIPR Link into the charger. At the plug point a

red LED should be visible indicating the charger is

correctly plugged in. A green charge status LED should

also come on indicating the KIPR Link battery is

charging. It will go off when the KIPR Link battery is

fully charged, which should take no more than 90

minutes. When on charge your KIPR Link should boot

into the home screen.

All of the motor ports have red lights on when I boot

my Link.

This indicates your KIPR Link Firmware has been

corrupted. Reload the firmware. See Appendix.

My Link comes on but only loads to the splash screen

and keeps rebooting continuously.

This behavior indicates the KIPR Link Firmware has been

corrupted. Reload the most current version of the

Firmware. See Appendix.

My Link’s touch screen is unresponsive, or it is difficult

to press buttons in the user interface.

You need to recalibrate the touch screen. From the

home screen of the KIPR Link. To fix this, press the

Settings button and then press Calibrate. Press each of

the four corners (a stylus may be helpful). If the Home

button is still hard to get to respond, recalibrate again

and don't press so far into the corners.

My Link will not compile code that successfully

compiled on my computer.

This indicates your KIPR Link Firmware is not in sync

with the KISS IDE. Reload the firmware. You may also

need to get the most current version of the IDE. See

Appendix.

My camera is displaying a frozen, black, or garbled

image in the vision menu.

This happens when the KIPR Link loses the connection

to the camera (such as when you unplug it and plug it

back in). Reboot the KIPR Link.

Page 36

Problem Solution
My KIPR Link is not recognized by my Mac running OS

10.4, but is recognized by my other computer running

OS 10.5 (or newer) or Windows.

Your KIPR Link Firmware is out of date. Reload the

firmware. See Appendix. See Appendix.

My KIPR Link is not recognized by my Mac running OS

10.5 (or newer).

Turn on your KIPR Link. Check to make sure that the

KIPR Link is listed in the System Profiler. If the KIPR Link

is not listed there, check to make sure your USB cable is

plugged in and functioning. If you are still having issues

try a different USB port.

My KIPR Link is not recognized by my PC running

Windows XP.

Turn on your KIPR Link. Under Control Panel .. Device

Manager check to see if the KIPR Link is listed in the

COM ports. It may appear as "Gadget Serial v2.4". If
there is a device warning, the system had issues

installing the driver, in which case try reinstalling the

driver by clicking on the port, or try reinstalling from the

KISS IDE installer. If the device isn't present in the COM

port listing, check to make sure your USB cable is

plugged in and functioning since powering on the KIPR

Link should cause your PC to establish the USB

connection. If you are still having issues try a different

USB port.

My KIPR Link is not recognized by my PC running

Windows 7 x64.

Turn on your KIPR LInk and use Device Manager as

outlined above to see if there is a COM port listing for

"KIPR Link" or for "Gadget Serial". If present with a

COM port number greater than 12, you need to purge

excess COM ports*, otherwise, make sure you are giving

the KISS IDE enough time to find the COM port, since as

largest it is the last checked. If there is no such COM

port listing, Gadget Serial should be listed under Other

Devices, and if not, try reinstalling the driver from the

KISS IDE installer. Once detected in Device Manager

right click Gadget Serial and select Update Driver

Software. If you have internet access, "Search

automatically" should fix the issue. If you opt to

"Browse my computer", point update to the

c:Windows/KIPRLinkDriver folder. If a KIPRLinkDriver

folder is not visible, under the Control Panel select

Folder Options .. View and activate Show hidden files,

folders, and drives. Now you should be able to see a

c:Windows/KIPRLinkDriver folder so you can go back to

Device Manager to try the "Browse" option.

Page 37

* Under Windows, excess, hidden COM ports may be

present, either from serial devices not currently in use

or from serial devices present during system power off

without an operating system shut down. Device

Manager can be set up to show hidden COM ports so

they can be selectively removed:

Step 1: Under Programs..Accessories right click

Command Prompt and select Run as Administrator.

Step 2: Enter

 set devmgr_show_nonpresent_devices=1

Step 3: Enter

 start devmgmt.msc

to bring up Device Manager.

Step 4: In Device Manager, under View select Show

Hidden Devices.

Step 5: Expand the COM port listing, right click each

excess COM port and select Uninstall to purge it.

The KISS IDE has been verified to run on all of the listed systems, but variations among system

configurations may in some instances prevent a communications link from being established until minor

adjustments are made. If you find yourself unable to get any of the above suggestions to work, please

call KIPR Technical Support for assistance.

Page 38

6. Appendices

Updating the KIPR Link Firmware

The Firmware for the KIPR Link is an image file which on boot provides a user interface and other system

services for the KIPR Link and its Linux-based operating system. Firmware releases are obtained from

http://files.kipr.org/link. Installation instructions and the current "official" release may be obtained via

the web site http://www.kipr.org/kiss-platform-link-firmware.

Equipment Needed: KIPR Link, KIPR Link AC Adapter, USB Flash Drive (preferably, a high quality one)

Step 1: Download the current release of the KIPR Link Firmware. Regardless of release number, the

downloaded firmware image is in the file named kovan_update.img.gz. Do not unzip this file, the

KIPR Link will take care of that in installing it.

Step 2: Copy the kovan_update.img.gz file to the root (top level) of your USB flash drive.

Step 3: Eject (unmount) the USB drive from your computer and wait a second or so for the system to

give you the go ahead before removing it. To eject a USB flash drive on a Mac (OSX) right click on

the USB drive icon and choose Eject. For Windows machines, under Computer right click on the USB

drive icon and choose Eject. This procedure protects the USB drive from being damaged or the

image file from being corrupted if the copy action has not yet finished.

Step 4: Unplug any motors, servos, or sensors from your KIPR Link and plug in the AC adapter. Power

off the KIPR Link, then plug the USB drive into one of the two USB ports on the back of the

controller.

Step 5: While holding down the side button on the opposite side from the KIPR Link power switch, turn

on the KIPR Link.

Step 6: Continue holding down the side button until the update bar appears, which signals that update

has started. Once the update starts, you can let go of the side button.

Step 7: Wait for the update to complete, remove the USB drive, and reboot the device by switching the

power off and back on again. Verify the firmware version. If not updated, the update procedure

probably failed to start and the KIPR Link simply booted using the older firmware, in which case

carefully repeat the process.

Step 8: From the home screen go into settings..calibrate to recalibrate the touch screen.

Page 39

Controlling an iRobot Create with the KIPR Link

The KIPR Link can control an iRobot Create via its TTL serial connection. You will need to get a KIPR Link

Create cable from the KIPR store (https://botballstore.org) or manufacture your own:

The iRobot Create uses a 7 pin Mini-Din connector where pin 3 is Create TTL

serial in, pin 4 is Create TTL serial out, and either pin 6 or 7 is GND.

The KIPR Link uses a 3 port female header plug connected to the Mini-Din plug

in the order Create serial out (red), GND, Create serial in.

Mini-Din pins 1 and 2 are for Create battery + (inactive except when the Create is on).

Once you have a KIPR Link/Create cable follow the steps below to communicate with your iRobot

Create.

Step 1: Connect the Mini-Din end of the KIPR Link/Create cable to the Mini-Din connection port of

the iRobot Create (it is hidden under a removable cover above the charge port on the Create).

Step 2: Connect the other end of the cable to the KIPR Link TTL serial port (the "official" cable has a

keyed plug, but a header plug will also work if red orientation is observed). The power plug is

optional, and if used, when the iRobot Create is turned on will "trickle" charge the KIPR Link

battery. If you aren't using an "official" cable, note the orientation of the wiring (Create serial

out, GND, Create serial in) has to be correct to establish a connection to the iRobot Create.

Step 3: Write a program for the KIPR Link that communicates with the iRobot Create and download

it to the KIPR Link.

Step 4: Set the iRobot Create on the ground.

Step 5: Power on the iRobot Create (this is the step most commonly left off!)

Step 6: Run your program on the KIPR Link.

The KIPR Link serial interface is normally used for downloading programs from the KISS IDE to the KIPR
Link via USB. This same interface is also used for communicating with the iRobot Create. The
create_connect library function redirects the serial interface to the TTL serial connection instead of the
USB connection. It must be run before any of the functions in the KIPR Link Create Library will work.
The function create_disconnect is used to revert the serial connection to USB.

Page 40

iRobot Create KIPR Link Library Functions

There are a large number of functions in the KIPR Link Library for controlling an iRobot Create module.

These functions provide an interface between a program on the KIPR Link and the Create Open Interface

(http://www.irobot.com/filelibrary/pdfs/hrd/create/Create%20Open%20Interface_v2.pdf). The

functions which update sensor data, and the connection functions return the requested information if

they are successful and return a number greater than 100,000 if there is some error. If an error is

returned, the error message is 100,000 + <Create-Serial-Interface-Packet-Number>. For example, a code

of 100,007 indicates an error when requesting bumper or wheel drop sensor status.

The functions for moving the iRobot Create are non-blocking, excepting scripts which once started play

to completion. Movement commands (with the exception of create_stop) are sent to the iRobot Create

only if they represent a change from the previous movement command. For this reason, movement

commands may be placed in tight loops without concern of overwhelming the serial connection. The

iRobot Create's trajectory will continue until a different movement command is given.

The iRobot Create may also be used to play MIDI music. Up to sixteen 16 note songs may be loaded into

the iRobot Create. See the Create Open Interface manual for details on note and duration codes.

These are the commonly used functions, for a complete list, see the appendices.

create_connect()

Connects the KIPR Link serial interface to the iRobot Create. Call this function first. By default
the iRobot Create will be in “safe mode”.

create_disconnect()

Disconnects the KIPR Link from the iRobot Create by reverting the serial interface to USB. Call
this function at the end of the program, otherwise the KIPR Link will remain connected to the
iRobot Create and the KISS IDE will not be able to communicate with your KIPR Link. This
function also shuts off the Create motors. Power cycling your KIPR link will also revert the serial
interface to USB.

create_stop()

Stops the drive wheels.

create_drive(<speed>,<radius>)

Drives in an arc at a set speed. Speed range is 20-500mm/s, radius is in mm.

Page 41

create_drive_direct(<left motor speed>,<right motor speed>)

Specifies individual left and right motor speeds from 20-500 mm/sec (plus or minus)

As the iRobot Create operates, it accumulates data on distance traveled and angle turned through.
There are also "set_create" and "get_create" functions in the KIPR Link Create Library for initializing and
obtaining these measures. The complete listing is in the appendix. Two commonly used set_create and
get_create pairings are :

set_create_distance(value)

Initializes the distance accumulation (in mm) to the specified value.

get_create_distance()

Returns the distance (in mm) that the center of the iRobot Create has traveled since the
distance accumulation was last initialized.

set_create_total_angle(value)

Initializes the total turn angle accumulation (in degrees) to the specified value.

get_create_ distance()

Returns the total angle (in degrees) that the iRobot Create has turned through since the total
angle accumulation was last initialized.

"get_create" functions in the KIPR Link Create Library are also used for querying the iRobot Create
regarding the status of its sensors; for example,

get_create_lbump()

Returns the value of the left bump sensor (pressed = 1, not pressed = 0)

Page 42

The following diagram shows additional get_create suffixes for sensors whose status can be accessed via
the KIPR Link Create Library.

The complete listing of get_create functions is in the KISS IDE documentation and in the appendices.

In using an iRobot Create module, keep in mind that the Create and the KIPR Link are independent
entities communicating via a serial connection. If the connection is lost, the iRobot Create will continue
on its own according to the last command it received. The relatively slow nature of the communications
between the KIPR Link and iRobot Create may also cause sensor data to be missed unless your program
is constructed to recognize that possibility (e.g, collect 3 readings at 0.1 second intervals and go with
best 2).

cwdrop()

lfcliff() rfcliff()

lbump() rbump()

lcliff() rcliff()

lwdrop() rwdrop()

battery_capacity()

Page 43

Sample Program for Controlling an iRobot Create with the KIPR Link

This sample program is a demo to make the iRobot Create drive in a circle with a radius of 0.25 meters

at a speed of 200 mm/sec for 10 seconds, then displaying the distance traveled and the angle covered.

Set Up

Fully charge your KIPR Link and iRobot Create. Connect the KIPR Link to the iRobot Create with the KIPR

Link Communication cable. Place the KIPR Link into the cargo bay of the iRobot Create. Set the iRobot

Create on the floor with an adequate area cleared in front of the iRobot Create. Note that if the iRobot

Create detects a ledge with the cliff or wheel drop sensors (like being picked up), the program will stop

and the iRobot Create will play a sad tone.

Code

 /* This is a program to make the iRobot Create drive in a circle

with a radius of 0.25 meters at a speed of 200 mm/sec for 10 seconds,

the displaying the distance traveled around the circle and the angle

that the turn covered*/

int main()

 {

 printf("connecting to Create\n");

 create_connect();

 set_create_distance(0);

 set_create_total_angle(0);

 create_drive(200, 250);

 msleep(10000);

 create_stop();

 printf("\nResults:\n");

 printf(" distance = %d mm\n", get_create_distance());

 printf(" angle = %d degrees\n", get_create_total_angle());

 printf("\ndisconnecting from Create\n");

 create_disconnect();

}

Page 44

Writing an iRobot Create Script

The iRobot Create Open Interface is described in a guide made available via the web

(http://www.irobot.com/filelibrary/pdfs/hrd/create/Create%20Open%20Interface_v2.pdf). Among

other things, the guide describes the serial byte codes used to govern the behavior of the iRobot Create

module.

The KIPR Link communicates with the iRobot Create via a (TTL) serial connection. Functions are included

in the KIPR Link Library for the iRobot Create, and send serial byte code sequences to the Create over

the serial connection, making it possible to operate the Create without having to reference the Open

Interface guide. These sequences cover the large majority of actions users typically want to have

performed by a Create module (e.g., drive forward at a given speed, determine how far the Create has

travelled, etc). They also provide a means for the KIPR Link to directly control an iRobot Create.

The Open Interface also provides for scripts, where a script is a (limited) sequence of iRobot Create byte

code commands ordered to perform some set of actions independent of external control. In contrast to

other commands, a command to start a script disables serial communications until the script has

finished.

The iRobot Create has several built in scripts, mostly to serve the needs of its cousin, the iRobot

Roomba. The Open Interface provides byte code commands for running these. It also has a byte code

command for loading a user defined script onto the iRobot Create along with a byte code command to

start it running. The user defined script remains available until the iRobot Create is power cycled.

Unlike high level languages, scripts for the iRobot Create have no provision for flow of control

commands such as if and while, but can use commands to wait for an elapsed time, or for a specified

distance or angle to be reached, or for an event such as a bump (wait commands are not available

except within scripts).

Memory for storing a user defined script is limited to 100 bytes.

The create_write_byte function in the KIPR Link Library is used for defining and sending a script (byte by

byte) to the iRobot Create. The KIPR Link Library provides 3 commands for serial communications

between the KIPR Link and an iRobot Create.

create_read_block(<data string>, <count>)

The Create sends the number of bytes specified into the data string.

create_write_byte (<byte>)

The KIPR Link send the specified byte to the iRobot Create.

create_clear_serial_buffer()

The internal serial buffer is emptied of any unaccessed send/receive data.

Page 45

Example

The following program includes a function that uses create_write_byte to define and send a script to

the iRobot Create byte by byte. The script is designed to move the Create a specified distance at a

specified speed and illustrates the low level coding involved in defining a script.

Code

When an int in the range -32,768-32,767 is provided as the argument for create_write_byte, the value
assigned to the byte is the low order byte (bits 0-7). To change this to bits 8-15, first right shift (>>) the
int by 8 bits.

#define RUN_SCRIPT create_write_byte(153)
void make_drive_script(int speed, int dist) {

 create_write_byte(152); // specifies start of script definition

 create_write_byte(13); // remaining number of bytes in script

 create_write_byte(137); // drive command, speed & radius follow

 create_write_byte(speed >> 8); // send bits 8-15 of speed

 create_write_byte(speed); // and then send bits 0-7
 create_write_byte(128); // send hex 80 (X8000 specs drive straight)

 create_write_byte(0); // and then send hex 00 (no turn radius)

 create_write_byte(156); // wait for distance command, dist follows

 create_write_byte(dist >> 8); // send the 2 bytes

 create_write_byte(dist); // for distance in mm

 create_write_byte(137); // stop by dropping speed and radius to 0

 create_write_byte(0); // speed = 0
 create_write_byte(0);

 create_write_byte(0); // turn radius = 0

 create_write_byte(0);

 // end of script (15 bytes)

}

int main() {
 create_connect();

 set_create_distance(0);

 set_create_total_angle(0);

 make_drive_script(500, 500); // script to move 0.5m at 500 mm/sec

 msleep(500); // give serial connection some time

 RUN_SCRIPT;
 msleep(1500); // allow time for the script to finish (+ some extra)

 printf(" distance traveled = %d mm\n", get_create_distance());

 printf(" angle turned = %d degrees\n", get_create_total_angle());

 create_disconnect();

}

Page 46

There are three major byte code commands used in the script:

1. Byte code 152

Specifies start of script definition, and must be immediately followed by a byte that gives

the remaining number of bytes in the script (0-98).

2. Byte code 137

Byte codes 137 is a drive command for the iRobot Create, and must be immediately

followed by 4 bytes representing two 16-bit two's complement integers representing speed

and turn radius in mm, respectively. The high order byte (bits 8-15) of each number is sent

first. For a positive speed and positive turn radius, the iRobot Create arcs to the left while

driving forward. A turn radius of hex 8000 or 7FFF (32,767) is a special case to drive straight.

There are also special cases for turning in place CW and CCW.

3. Byte code 156

Command to wait until the iRobot Create has traveled a specified distance, immediately

followed by 2 bytes representing a 16-bit two's complement integer for distance in mm.

Byte code 153 is the command sent by the program that directs the iRobot Create to run the current

user defined script.

The byte code 137 drive command does not provide for individual control of drive motors. Byte code
145 is a drive command for providing direct control, where the two 16-bit two's complement integers
that immediately follow it specify right and left motor speeds, respectively.

The wait command used in the example is for distance traveled. There are 4 wait commands that can be
used in scripts (but not otherwise):

1. wait for elapsed time (155)
The byte code is followed by 1 byte giving time from 0-255 tenths of a second, resolution of
15ms.

2. wait for distance traveled (156)
The byte code is followed by 2 bytes giving the distance (mm) as a 16-bit 2's complement
integer.

3. wait for total angle rotated through (157)
The byte code is followed by 2 bytes giving the angle (mm) as a 16-bit 2's complement
integer.

4. wait for event to occur (158)
The byte code is followed by a 1 byte event number (+ or minus, where + is for event
occurrence, and - is for event non-occurrence). For example, event -9 is "no wall detected"
(e.g., the event doesn't occur until a robot being sensed by the wall sensor has moved out of
the way). To obtain a complete listing of the 22 wait events recognized by this command,
consult the Create Open Interface.

The most typical use for scripts is to move a Create, so the above example can be used as a template for
script development.

Page 47

Here are few other ideas to consider regarding the use of scripts:

1. A script can be run indefinitely by concluding it with byte code 153 (the run script command).

2. A command sequence constructed as "drive, wait for event, stop" will continue immediately to
the stop sequence if the event occurrence is already present, which has the effect of preventing
the script from moving the Create.

3. A script can control the Create whether or not the KIPR Link that provided the script remains
attached. For example, if a user script is started that immediately waits for a "trigger" event
(such as a bump), the iRobot Create will remain idle until the event occurs, during which time
the KIPR Link can be detached. In this manner, a script can be used as a means for operating an
iRobot Create as an independent, if somewhat limited, robot entity.

Page 48

Sample Program for Using KIPR Link Digital Output to Light an LED

By default the digital ports for the KIPR Link are configured for input. The KIPR Link Library function

set_digital_output is used to configure digital port direction; for example,

set_digital_output(9, 1); configures port 9 for output and

set_digital_output(9, 0); configures it for input.

For a digital port configured for output, the KIPR Link Library function set_digital_value is used to set
the port's output value to either 0 (low) or 1 (high); for example,

set_digital_value(9, 1); sets the output value for port 9 high.

If you have 5mm LED on hand, you can use the following program to operate it. An LED will "turn on"
when voltage applied to its anode lead rises above a prescribed level (typically between 1.9 and 3.2V,
depending on color). If too much current is passed through the LED, it will burn out (the typical spec is
20-30mA). For the KIPR Link, digital outputs on the SEN rail are sufficiently current limited to operate an
LED without burning it out.

The LED's anode is normally identified by having the longer of the two leads.
Additionally, the flange at the base of the LED is normally flattened on the cathode side.

Setup

Insert the LED's anode lead into port 9's SEN line and the cathode lead into the a slot on the GND rail.

Code

anode (+)

c

cathode (−)

/* This is a program to blink an LED plugged into digital port 9 */

int main()

 {

 printf("LED in port 9\n");

 printf("Press side button to quit\n");

 set_digital_output(9, 1);

 while (side_button() == 0) {

 set_digital_value(9, 1);

 msleep(500);

 set_digital_value(9, 0);

 msleep(500);

 }

 set_digital_output(9, 0);

 printf("\ndone\n");

}

Page 49

Sample Program Using a Thread for Monitoring a Sensor

In computer usage, the term thread is short for the phrase "thread of execution", and represents a
sequence of instructions to be managed by the system as it schedules processing time among running
processes. On a single processor machine, like the KIPR Link, the instructions running in separate
threads appear to be operating in parallel. Each thread, once started, will continue until its process
finishes or until it is forcibly terminated by another process using the thread_destroy function. Each
active thread gets a small amount of time in turn until all of its statements have been executed or it is
forcibly terminated. If a thread's process cannot complete all of its statements before its turn is over, it
is paused temporarily for the next thread to gets its share of time. This continues until all the active
threads have gotten their slice of time and then it all repeats. Assuming the processor is fast enough,
from the user's viewpoint it appears that all of the active processes are running in parallel.

Functions running in threads can communicate with one another by reading and modifying global
variables. The global variables can be used as semaphores so that one process can signal another.
Process IDs may also be stored in global variables so that one process can destroy another one's thread
if that is necessary program logic (think in terms of a process that is in an indefinite loop monitoring
sensors, so it would never finish otherwise).

There are four KIPR Link Library functions for controlling threads, thread_create, thread_destroy,
thread_start, and thread_wait. A variable used for retaining a thread's system id must have the special
data type, thread.

In the following example a thread is employed for running a function that monitors the side_button,
raising a flag if it has been pressed. This way, a button press that occurs while the main function is in
sleep mode is still captured. The flag is implemented using a global variable.

Code

 int flag = 0; // global flag to signal when side button pressed
void chksens() {

 while (1) {

 if (side_button()) flag = 1; // if button pressed, flag it

 msleep(100); // keep checking side button (every 1/10th second)

 }

}
int main() {

 int cnt = 0;

 thread tid; // thread variable for holding thread id

 tid = thread_create(chksens); // create a thread for chksens

 thread_start(tid); // start chksens running in its thread

 while (flag == 0) { // thread is still running while main sleeps

 display_printf(1,1,"elapsed time %d ",++cnt);
 msleep(1000);

 }

 thread_destroy(tid); // remove the thread

 printf("\ndone\n");

}

Page 50

File I/O for a USB Flash Drive Plugged into the KIPR Link

Before the Linux operating system can access a file system, it has to "mount" the file system. When a
USB flash drive is plugged into the KIPR Link, it is automatically mounted. When the USB flash drive is
unplugged it is automatically unmounted. The C Library has a number of functions designed to access
files located in mounted file systems. The library functions fprintf and fscanf respectively provide a
straight forward means for writing formatted output to a file on a USB drive plugged into the KIPR Link,
and for reading formatted data from a file on the USB drive. There are a number of file processing
commands, including ones for accessing files byte by byte. For a full description of the range of functions
available consult a standard C reference book.

To access a file, in addition to the file name, the directory "path" leading to the file has to be known. For
the KIPR Link, the directory path to a mounted Flash drive in a USB port is

 /kovan/media/sda1/

Files are accessed in C via a pointer of type FILE, which is defined in the system header file <stdio.h>.

The pointer for a file is established when the file is "opened" for access. If the fopen function returns a
NULL pointer, it indicates that either the file doesn't exist for the specified file path, or its file system
hasn't been mounted (e.g., the USB drive has not been plugged in). Both cases are illustrated in the
following program for a USB drive plugged into a KIPR Link. The example otherwise is a program
designed to send data to a file, close the file, then reopen the file and retrieve the data to verify a
successful write operation. If the file doesn't exist it is created. If it does exist, it is appended to. A user
defined preprocessor macro (USB) is constructed to set the file path for the USB drive, illustrating how
the preprocessor can be used to potentially simplify program code.

Example program using fprintf and fscanf:

#include <stdio.h> // make sure file I/O is defined

/* USB is a Macro defined to preface a file name with the directory path for

a mounted USB drive, turning the result into a character string */

#ifndef USB

/* An auxiliary macro is employed that converts its argument into a string

(by surrounding it with double quote marks) */

#define _STRINGIFY_(x) #x

/* the USB macro appends x to the path for the USB drive, then uses

STRINGIFY to turn it into a string */

#define USB(x) _STRINGIFY_(/kovan/media/sda1/x)

#endif

int main() {

 FILE *f; // file pointer f (the FILE data type is in <stdio.h>)

 // A file name "myUSBfile" for the USB drive is set up using macro USB

 char s[81], chkf[] = USB(myUSBfile); // file path as a string variable

 int x, data = 2;

 // try opening for read ("r") to see if the file exists

 if ((f = fopen(chkf,"r")) != NULL) {

 fclose(f); // file chkf already exists

 printf("Will be appending to USB %s\n", chkf);

 }

 // (file given by chkf is not open at this point)

Page 51

 // open to append ("a"), which also tests if the USB stick is plugged in

 if ((f = fopen(chkf,"a")) == NULL) {

 printf("No USB stick detected\n");

 return -1; // exit the program

 }

 // file is now open for append; if it didn't exist it has been created

 printf("Sending %s, %d\n", "Field ", data);

 fprintf(f,"Field "); // use fprintf to send a text string to chkf

 fprintf(f,"%d",data); // now send formatted numeric data using fprintf

 fclose(f); // close the file to make sure the output is sent

 // now read it back

 f = fopen(chkf,"r"); // it exists since we just created it

 fscanf(f,"%s %d",s, &x); // read the two data items from the file

 fclose(f); // done with file, so close it

 printf("Data read is %s: %d\n", s, x);

}

The USB drive can now be removed from the KIPR Link. A file named myUSBfile will now be present
on the USB drive and can be accessed using a text editor to verify file contents .

Page 52

Creating your own sensor

Tools Needed

• Soldering Iron

• Wire clipper

• Wire stripper

• Hot melt glue gun or heat source for heat shrink tubing

• Razor knife or sharp scissors

Supplies needed

• 1 x 4 male header, 0.1” (2.54mm) spacing (if all you have is a longer header row, you can use

your wire clipper to clip off a 1 x 4)

• Small gauge stranded wire (28 AWG ribbon cable is preferred)

• Solder

• Sensor (3.3V is preferred, but 5V will work)

• Insulating material (like hot glue or heat shrink)

Method

The KIPR Link sensor interface employs standard 0.1” (2.54mm) female headers. There are three female

header rows that make up the analog and digital sensor ports. The gap between Row 1 and Row 2 (as

shown below) is 0.1” (2.54mm). Row 1 is the sensor input SEN, Row 2 is Vcc which is set at +5V, and Row

3 ground is GND. Adjusting jumper settings to alter rail voltage requires opening the case, voiding your

warranty - if this is something you have questions about, call KIPR Technical Support.

The KIPR Link normally will work with either 3.3V or 5V sensors. For a 3.3V sensor a max value reading

for SEN occurs when voltage reaches 3.3V or more (Row 1). You will need to read the data sheet for the

sensor you are creating to determine how the sensor needs to be wired.

KIPR sensors use wire peeled from standard 28AWG ribbon cable, which because it is stranded is much

more flexible than solid wire. Your sensor connection will require either a two wire cable or a three wire

cable, depending on its specification.

KIPR sensor plugs are based on 1 x 4 male headers clipped from longer header rows, with one of the two

middle pins pulled clear to provide a gap between Row 1 and Row 2.

Row 1 – SEN

Row 2 – Vcc (+5V)
Row 3 – GND

Page 53

To make the connection between sensor and plug, form leads by separating the wires a small amount on

each end of the cable, then strip off enough insulation to be able to solder the leads to your sensor on

one end and to the plug on the other. Be careful that you match up each connection from the sensor

to its corresponding pin on the plug. Use a colored marker to identify the same outer wire on each end

of the cable as an easy way to avoid a cross connection.

Once your cable is attached to your plug and your sensor, you need to insulate the leads to prevent any

cross contact. KIPR sensors use hot melt glue for this purpose, which also stabilizes the connection and

provides strain relief (to flatten the glue before it hardens, sandwich between two refrigerated pieces of

smooth metal, then trim off excess glue using a razor knife or sharp scissors).

Before plugging your new sensor into your KIPR Link, use a multi meter to check for shorts and for

continuity between each sensor lead and its corresponding plug lead.

Navigate to the sensors screen on the KIPR Link (Motors and Sensors .. Sensor List), and plug in your

sensor. For the port plugged into, as the sensor operates, the value should flip between 0 and 1 for a

digital sensor and vary between 0 and 1023 for an analog sensor.

Page 54

Creating your own motor

Tools Needed

• Soldering Iron

• Wire clipper

• Wire stripper

• Hot melt glue gun or heat source for heat shrink tubing

• Razor knife or sharp scissors

Supplies needed

• 1 x 3 male header, 0.1” (2.54mm) spacing

• Small gauge stranded wire (28 AWG ribbon cable works best)

• Solder

• DC Motor (5V or more, with less than 1A current draw - max motor port power is 5V))

• Insulating material (like hot glue or heat shrink)

Method

As for sensors ports, the KIPR Link DC motor interface employs standard 0.1” (2.54mm) female headers.

Each pair of motor ports is a dual 1 x 3 female header strip serviced by a dual H-bridge chip for PWM.

The outside two positions (pins 1 and 3) provide the DC poles for driving a motor (analogous to using a

battery). For Pin 1 negative (-) and Pin 3 positive (+) the green motor light is lit when the motor is

powered. If the polarity is reversed (Pin 1 + and Pin 3 -) then the red motor light is the one lit. By

convention, the polarity that lights green is "forward" and the one that lights red is "backward"

(remember that if the connection is reversed, the motor simply runs in the opposite direction, so

"forward" is a relative term). The middle pin is internally connected to pin 1 but it is best to not use it

since the Pin 1/Pin 3 plug can't be plugged in wrong.

When choosing a motor, be aware that supply voltage is regulated by PWM (Pulse Width Modulation),

which has a non-linear response curve in providing an effective voltage level that ranges from 0 to 5V.

The BEMF PID (Back Electro Motive Force, Proportional Integral Derivative) control system for PWM

Pin 3 – Opposite polarity of Pin 1

Pin 2 – not used

Pin 1 – Opposite polarity of Pin 3

Page 55

provides means for more precise motor control, but requires selecting PID values matching motor

characteristics, which can be non-trivial to determine. Also note that the maximum current draw is 1A.

A motor which exceeds this will probably cause the KIPR Link to crash.

You will need to read the data sheet for the particular motor you are using to figure out how the motor

needs to be wired and whether or not it can be operated using a KIPR Link motor port and PWM to vary

motor response.

KIPR DC motors use wire peeled from standard 28AWG ribbon cable, which because it is stranded is

much more flexible than solid wire. Your DC motor connection will require a two wire cable (as is the

case for connecting a DC motor to a battery).

KIPR motor plugs are based on 1 x 3 male headers clipped from longer header rows, with the middle pin

pulled clear to provide a gap between Pin 1 and Pin 3.

To make the connection between motor and plug, form leads by separating the wires a small amount

on each end of the cable, then strip off enough insulation to be able to solder the leads to your motor

connections on one end and to the plug on the other.

Once your cable is attached to your plug and your motor, you need to insulate the leads to prevent any

cross contact. KIPR sensors use hot melt glue and shrink wrap tubing for this purpose, which on the plug

end also stabilizes the connection and provides strain relief (to flatten the glue before it hardens,

sandwich between two refrigerated pieces of smooth metal, then trim off excess glue using a razor knife

or sharp scissors).

Before plugging your new motor into your KIPR Link, use a multi meter to check for shorts and for

continuity between motor connections and plug pins.

Navigate to the motors screen on the KIPR Link (Motors and Sensors .. Motors), and plug in your motor.

Select the port plugged into and press Power. Pressing Forward or Backward should operate your motor

and represents the maximum (PWM) power the KIPR Link provides.

Page 56

Setting the sensor ports for 5V or 3.3V

Warning! This modification requires opening your KIPR Link case, which will

void your warranty. KIPR assumes no liability for the accuracy of these

instructions and following them is strictly at your own risk regarding any

damage which might occur to either person or equipment employed.

By default the digital and analog sensor ports on the KIPR Link are set to provide +5V on the Vcc rail,

which is also the nominal voltage for the SEN rail. This is internally jumper selectable to be either +5V or

+3.3V. There are separate jumpers for the analog rails (0-7) and the digital rails (8-15). The powered

sensors offered in the Botball Store (https://botballstore.com) will function properly for either setting,

but that may not be true for sensors you construct yourself.

Before opening your KIPR Link case, make sure your work area is static free, and keep in mind that

opening your KIPR Link case voids your KIPR Link warranty. A grounding strap is strongly recommended

for performing this modification. As common sense would dictate, be sure your KIPR Link charger is not

plugged into the KIPR Link before you proceed.

Step 1: Remove the 4 corner screws that hold the bottom half of the

KIPR Link case to its top. These are socketed for a Torx #7 screw driver

(available from most hardware stores).

Step 2: Lift off the bottom half of the KIPR Link case and disconnect the battery, then remove the

(single) Phillips head screw attaching the circuit board to the top half of the KIPR Link case.

Battery

plug

Phillips

screw

Page 57

Step 3: Carefully loosen the circuit board from the top half of the case, turn the assembly over and move

the top half of the case back just enough off of the circuit board to expose the jumper plugs as shown

below. Be very careful not to kink or otherwise stress the cable which attaches the display screen to the

circuit board. To reset a jumper for the desired voltage level, pull its shunt off of the pins and reinstall it

on the pins as indicated by the values printed on the circuit board. In the picture below, the analog

ports are set for +3.3V and the digital ports for +5V.

Step 4: Turn the top of the case back over and carefully reinstall the circuit board, then replace the

Phillips head screw.

Step 5: Reattach the battery and close up your KIPR Link, paying particular attention that the battery

cables are clear and the speaker is back in place, then reinstall the 4 Torx screws that hold the bottom

half of the case to the top.

Step 6: Boot your KIPR Link to verify it is still working.

Analog rails
jumper plug

Digital rails
jumper plug

Display screen cable

Analog and digital ports

Page 58

KIPR Link Main Library Functions

(alphabetic order - Math functions are from the C math library and are also automatically included)

a_button [Category: Sensors]
Format: int a_button();
Reads the value (0 or 1) of the A button.

a_button_clicked [Category: Sensors]
Format: int a_button_clicked();
Gets the A button's state (pressed or not pressed). If pressed, blocks until released. Returns 1
for pressed, 0 for not pressed. The construction

while (a_button()==0) {

while (a_button()==1); . . .} //debounce A button

is equivalent to
while (a_button_clicked()==0) {. . .}

accel_x [Category: Sensors]
Format: int accel_x();
Returns the value of the accelerometer in its x direction relative to the horizontal plane of the
KIPR Link.

accel_y [Category: Sensors]
Format: int accel_y();
Returns the value of the accelerometer in its y direction relative to the horizontal plane of the
KIPR Link.

accel_z [Category: Sensors]
Format: int accel_z();
Returns the value of the accelerometer for its vertical, or z direction, relative to the horizontal
plane of the KIPR Link. When the Link is horizontal it is calibrated to have a value
corresponding to the gravitational constant G (your acceleration to towards the center of the
Earth to keep you from flying off of the planet).

alloff [Category: Motors]
Format: void alloff();
Turns off all motors. ao is a short form for alloff.

analog [Category: Sensors]
Format: int analog(int p);
Returns the value of the sensor installed at the port numbered p. The result is an integer
between 0 and 255. The function can be used with analog ports 0 through 7.

analog10 [Category: Sensors]
Format: int analog10(int p);
10-bit version of the analog function. The returned value is in the range 0 to 1023 rather than 0
to 255.

any_button [Category: Sensors]
Format: int any_button();
Returns 1 if any button is pressed (the Side button or any of the 6 soft buttons A,B,C,X,Y,Z).

ao [Category: Motors]
Format: void ao();
Turns off all motors.

Page 59

atan [Category: Math]
Format: double atan(double angle);
Returns the arc tangent of the angle. angle is specified in radians; the result is in radians.

b_button [Category: Sensors]
Format: int b_button();
Reads the value (0 or 1) of the B button.

b_button_clicked [Category: Sensors]
Format: int b_button_clicked();
Gets the B button's state (pressed or not pressed). If pressed, blocks until released. Returns 1
for pressed, 0 for not pressed. The construction

while (b_button()==0) {

while (b_button()==1); . . .} //debounce B button

is equivalent to
while (b_button_clicked()==0) {. . .}

beep [Category: Output]
Format: void beep();
Produces a tone. Returns when the tone is finished.

bk [Category: Motors]
Format: void bk(int m);
Turns motor m on full speed in the backward direction.
Example:

bk(1);

block_motor_done [Category: Motors]
Format: void block_motor_done(int m);
Function does not return until specified motor completes any executing speed or position
control movement.
Example:

mrp(0,500,20000L);

block_motor_done(1);

bmd [Category: Motors]
Format: void bmd(int m);
This function is the same as block_motor_done.

c_button [Category: Sensors]
Format: int c_button();
Reads the value (0 or 1) of the C button.

c_button_clicked [Category: Sensors]
Format: int c_button_clicked();
Gets the C button's state (pressed or not pressed). If pressed, blocks until released. Returns 1
for pressed, 0 for not pressed. The construction

while (c_button()==0) {

while (c_button()==1); . . .} //debounce C button

is equivalent to
while (c_button_clicked()==0) {. . .}

console_clear [Category: Output]
Format: void console_clear();
Clear the Link print buffer. See also display_clear.

Page 60

display_clear [Category: Output]
Format: void display_clear();
Clear the Link display for display_printf. See also console_clear.

display_printf [Category: Output]
Format: void display_printf(int col, int row, char s[], ...);
Perform a standard printf starting at screen location col, row. (col 0 to 41, row 0 to 9 - less if
extra buttons are turned on)

clear_motor_position_counter [Category: Motors]
Format: void clear_motor_position_counter(int motor_nbr);
Reset the position counter for the motor specified to 0.

cos [Category: Math]
Format: double cos(double angle);
Returns cosine of angle. angle is specified in radians; result is in radians.

digital [Category: Sensors]
Format: int digital(int p);
Returns the value of the sensor in sensor port p, as a true/false value (1 for true and 0 for false).
Sensors are expected to be active low, meaning that they are valued at zero volts in the active,
or true, state. Thus the library function returns the inverse of the actual reading from the
digital hardware: if the reading is zero volts or logic zero, the digital function will return true.
Valid for digital ports 8-15 only.

disable_servo [Category: Servos]
Format: void disable_servo(int p);
Disables specified servo port.

disable_servos [Category: Servos]
Format: void disable_servos();
Disables the servo motor ports (powers down all servo motors).

enable_servo [Category: Servos]
Format: void enable_servo(int p);
Enables specified servo port.

enable_servos [Category: Servos]
Format: void enable_servos();
Enables all servo motor ports.

exp10 [Category: Math]
Format: double exp10(double num);
Returns 10 to the num power.

exp [Category: Math]
Format: double exp(double num);
Returns e to the num power.

extra_buttons_show [Category: Output]
Format: void extra_buttons_show();
Shows the X, Y, and Z buttons on the Link display. Note: this reduces the display area for printf
and display_printf. See also extra_buttons_hide, get_extra_buttons_visible.

extra_buttons_hide [Category: Output]
Format: void extra_buttons_hide();
Hides the X, Y, and Z buttons on the Link display. Note: this is the default display configuration.
See also extra_buttons_show, get_extra_buttons_visible.

Page 61

fd [Category: Motors]
Format: void fd(int m);
Turns motor m on full in the forward direction.
Example:

fd(3);

freeze [Category: Motors]
Format: void freeze(int m);
Freezes motor m (prevents continued motor rotation, in contrast to off, which allows the motor
to "coast").

get_analog_pullup [Category: Sensors]
Format: int get_analog_pullup(int port);
Returns 1 if the port's pull up resistor is set (the default), and 0 otherwise. See also
set_analog_pullup.

get_extra_buttons_visible [Category: Sensors]
Format: int get_extra_buttons_visible();
Returns 1 if the X, Y, and Z buttons are visible, 0 if not. See also, extra_buttons_show,
extra_buttons_hide.

get_motor_done [Category: Motors]
Format: int get_motor_done(int m);
Returns whether the motor has finished a move with specified position.

get_motor_position_counter [Category: Motors]
Format: int get_motor_position_counter(int m);
Returns the current motor position value for motor m (a value which is continually being
updated for each motor using back EMF; a typical discrimination for a given motor is on the
order of 1100 position "ticks" per rotation).

get_pid_gains [Category: Motors]
Format: int get_pid_gains(int motor, int *p, int *i, int *d,
 int *pd, int *id, int *dd);

This function is used to obtain the weights of the PID control currently set for the motors. The
p, i and d parameters are the numerators for the P, I and D coefficients. The pd, id and dd
parameters are their respective denominators. Thus all of the parameters are integers, but the
actual coefficients can be floats. If a motor is jerky, the P and D terms should be reduced in size.
If a motor lags far behind, they should be increased. The default values are set at firmware
install. See also set_pid_gains.

get_servo_enabled [Category: Servos]
Format: int get_servo_enabled(int srv);
Returns 1 if the specified servo port is enabled and 0 otherwise. See also enable_servo,
disable_servo.

get_servo_position [Category: Servos]
Format: int get_servo_position(int srv);
Returns the position value of the servo in port srv. The value is in the range 0 to 2047. There
are 4 servo ports (0, 1, 2, 3).

log10 [Category: Math]
Format: double log10(double num);
Returns the logarithm of num to the base 10.

Page 62

log [Category: Math]
Format: double log(double num);
Returns the natural logarithm of num.

mav [Category: Motors]
Format: void mav(int m, int vel);
This function is the same as move_at_velocity.

motor [Category: Motors]
Format: void motor(int m, int p);
Turns on motor m at scaled PWM duty cycle percentage p. Power levels range from 100 for full
on forward to -100 for full on backward.

 move_at_velocity [Category: Motors]
Format: void move_at_velocity(int m, int vel);
Moves motor m at velocity vel indefinitely. The velocity range is -1000 to 1000 ticks per
second.

move_relative_position [Category: Motors]
Format: void move_relative_position(int m, int vel, int ticks);
Moves motor m at velocity vel from its current position curr_pos to curr_pos + ticks. The speed
range is 0 to 1000 ticks per second.
Example:
move_relative_position(1,275,-1100L);

move_to_position [Category: Motors]
Format: void move_to_position(int m, int vel, int pos);
Moves motor m at velocity vel from its current position curr_pos to pos. The speed range is 0
to 1000. Note that if the motor is already at pos, the motor doesn't move.

mrp [Category: Motors]
Format: void mrp(int m, int vel, int pos);
This function is the same as move_relative_position.

mtp [Category: Motors]
Format: void mtp(int m, int vel, int pos);
This function is the same as move_to_position.

msleep [Category: Time]
Format: void msleep(int msec);
Waits for an amount of time equal to or greater than msec milliseconds.
Example:

msleep(1500);//wait for 1.5 seconds

off [Category: Motors]
Format: void off(int m);
Turns off motor m.
Example:

off(1);

power_level [Category: Sensor]
Format: double power_level();
Returns the current power level in volts.

Page 63

printf [Category: Output]
Format: void printf(char s[], ...);
Prints the contents of the string referenced by s to the cursor position on the screen.
See the programmers manual embedded with the KISS IDE for more details.

random [Category: Math]
Format: int random(int m);
Returns a random integer between 0 and some very large number.

run_for [Category: Processes]
Format: void run_for(double sec, void <function_name>);

This function takes a function and runs it for a certain amount of time in seconds. run_for will
return within 1 second of your function exiting, if it exits before the specified time. The sec
argument denotes how many seconds to run the given function.

seconds [Category: Time]
Format: double seconds();
Returns the count of system time in seconds, as a floating point number. Resolution is one
millisecond.

set_a_button_text [Category: Sensors]
Format: void set_a_button_text(char txt[]);
This function sets the text displayed on the A button to be the text string specified rather than
'A'.

set_analog_pullup [Category: Sensors]
Format: void set_analog_pullup(int port, int pullupTF);
The purpose of this function is to enable or disable the pull up resistor present on each analog
port. Without the pull up resistor, the port is said to be floating. For example,
set_analog_pullup(3,0); configures analog port 3 to be "floating" (no pull up resistor)
whereas set_analog_pullup(3,1); configures port 3 as pull up (enables the pull up
resistor). Since many analog sensors lack an integrated pull up resistor (the "ET" sensor being a
notable exception), all sensor ports are set to non-floating when the KIPR Link is rebooted or
when a program exits.

set_b_button_text [Category: Sensors]
Format: void set_b_button_text(char txt[]);
This function sets the text displayed on the B button to be the text string specified rather than
'B'.

set_c_button_text [Category: Sensors]
Format: void set_c_button_text(char txt[]);
This function sets the text displayed on the C button to be the text string specified rather than
'C'.

set_digital_output [Category: Output]
Format: void set_digital_output(int port, int inout);
Digital ports on the KIPR Link can be configured for either input or output. By default digital
ports are set for input. The statement set_digital_output(9,1) will configure digital
port 9 for output. The port parameter must be in the range of values 8-15.

Page 64

set_digital_pullup [Category: Sensors]
Format: void set_digital_pullup(int port,int pullupTF);
Digital ports provides a pull up resistor for sensors that don't have an integrated pull up
resistor which can be turned off for sensors that set their own pull up value (there aren't any
digital sensors of this type used for Botball). For example, set_digital_pullup(9,0);
configures digital port 9 to be "floating" (no pull up resistor) whereas
set_digital_pullup(9,1); configures port 9 as pull up (enables the pull up resistor)

set_digital_value [Category: Output]
Format: void set_digital_value(int port, int value);
Digital ports on the KIPR Link can be configured for either input or output. For a port
configured for output, this function is used to set its value to either 0 (low) or 1 (high). The
port parameter must be in the range of values 8-15.

set_pid_gains [Category: Motors]
Format: int set_pid_gains(int motor, int p, int i, int d,
 int pd, int id, int dd);
This function is used to adjust the weights of the PID control for the motors. The p, i and d

parameters are the numerators for the P, I and D coefficients. The pd, id and dd parameters are
their respective denominators. Thus all of the parameters are integers, but the actual
coefficients can be floats. If a motor is jerky, the P and D terms should be reduced in size. If a
motor lags far behind, they should be increased. The default values are set at firmware install
and may be adjusted using the pid screen.

set_servo_position [Category: Servos]
Format: int set_servo_position(int srv, int pos);
Sets the position value of the servo in port srv. The value of pos must be in the range 0 to 2047.
There are 4 servo ports (0, 1, 2, 3).

set_x_button_text [Category: Sensors]
Format: void set_x_button_text(char txt[]);
This function sets the text displayed on the X button to be the text string specified rather than
'X'. See also extra_buttons_hide, get_extra_buttons_visible.

set_y_button_text [Category: Sensors]
Format: void set_y_button_text(char txt[]);
This function sets the text displayed on the Y button to be the text string specified rather than
'Y'. See also extra_buttons_hide, get_extra_buttons_visible.

set_z_button_text [Category: Sensors]
Format: void set_z_button_text(char txt[]);
This function sets the text displayed on the Z button to be the text string specified rather than
'Z'. See also extra_buttons_hide, get_extra_buttons_visible.

setpwm [Category: Motors]
Format: int setpwm(int m, int dutycycle);
Runs motor m at duty cycle dutycycle (values-100 to 100)

side_button (or black_button) [Category: Sensors]
Format: int side_button();
Reads the value (0 or 1) of the (physical) side button on the KIPR Link.

Page 65

side_button_clicked [Category: Sensors]
Format: int side_button_clicked();
Gets the Side button's state (pressed or not pressed). If pressed, blocks until released. Returns
1 for pressed, 0 for not pressed. The construction

while (side_button()==0) {

while (side_button()==1); . . .} //debounce Side button

is equivalent to
while (side_button_clicked()==0) {. . .}

sin [Category: Math]
Format: double sin(double angle);
Returns the sine of angle. angle is specified in radians; result is in radians.

sqrt [Category: Math]
Format: double sqrt(double num);
Returns the square root of num.

tan [Category: Math]
Format: double tan(double angle);
Returns the tangent of angle. angle is specified in radians; result is in radians.

thread_create [Category: Threads]
Format: thread thread_create(<function name>);
thread_create is used to create a thread for running a function in parallel to main, returning a
thread ID value of type thread. The special data type thread is for the thread IDs used by the
system to keep track of active threads. Note that the returned value must be assigned to a
variable of type thread to remain available. When a function is run in a thread (via
thread_start), the thread will remain active until the function finishes or the thread is
destroyed (via thread_destroy). If the thread hasn't been destroyed, it can be started again;
otherwise, a new thread has to be created for the function.

thread_destroy [Category: Threads]
Format: void thread_destroy(thread id);
thread_destroy is used to destroy a thread created for a function. A thread is destroyed by
passing its thread ID to thread_destroy. The following example shows the main process
creating a check_sensor thread, running it in parallel via thread_start, and then destroying it
one second later (whether or not the thread is still active):

int main() {
 threadtid;

 tid = thread_create(check_sensor);

 thread_start(tid);

 msleep(1000);

 thread_destroy(tid);

}

thread_start [Category: Threads]

Format: void thread_start(thread id);

thread_start is used to activate a thread, running its associated function in parallel with main

and any other active threads. The thread variable used in the argument must have a thread ID

value as returned by thread_create. Note that thread IDs generated by thread_create must be

retained in variables of type thread to remain available for later use. The thread is active until

its function finishes or until it is terminated by thread_destroy.

Page 66

thread_wait [Category: Threads]
Format: void thread_wait(thread id);
The thread_wait function is used to wait for a thread that has been started by thread_start to
finish, where id is the thread ID value returned by thread_create when the thread was created.

x_button [Category: Sensors]
Format: int x_button();
Reads the value (0 or 1) of the X button. This button is an extra button. Use
extra_buttons_show() to show the X, Y, and Z buttons. See also extra_buttons_hide,
get_extra_buttons_visible.

x_button_clicked [Category: Sensors]
Format: int x_button_clicked();
Gets the X button's state (pressed or not pressed). If pressed, blocks until the button is
released. Returns 1 for pressed, 0 for not pressed. The "debounce" construction

while (x_button()==0) { while (x_button()==1); . . .}

is equivalent to
while (x_button_clicked()==0) {. . .}

This button is an extra button. Use extra_buttons_show to show the X, Y, and Z buttons. See
also extra_buttons_hide, get_extra_buttons_visible.

y_button [Category: Sensors]
Format: int y_button();
Reads the value (0 or 1) of the Y button. This button is an extra button. Use
extra_buttons_show to show the X, Y, and Z buttons. See also extra_buttons_hide,
get_extra_buttons_visible.

y_button_clicked [Category: Sensors]
Format: int y_button_clicked();
Gets the Y button's state (pressed or not pressed). If pressed, blocks until the button is
released. Returns 1 for pressed, 0 for not pressed. The "debounce" construction

while (y_button()==0) { while (y_button()==1); . . .}

is equivalent to
while (y_button_clicked()==0) {. . .}

This button is an extra button. Use extra_buttons_show to show the X, Y, and Z buttons. See
also extra_buttons_hide, get_extra_buttons_visible.

z_button [Category: Sensors]
Format: int z_button();
Reads the value (0 or 1) of the Z button. This button is an extra button. Use
extra_buttons_show to show the X, Y, and Z buttons. See also extra_buttons_hide,
get_extra_buttons_visible.

z_button_clicked [Category: Sensors]
Format: int z_button_clicked();
Gets the Z button's state (pressed or not pressed). If pressed, blocks until the button is
released. Returns 1 for pressed, 0 for not pressed. The "debounce" construction

while (z_button()==0) {while (z_button()==1); . . .}

is equivalent to
while (z_button_clicked()==0) {. . .}

This button is an extra button. Use extra_buttons_show to show the X, Y, and Z buttons. See
also extra_buttons_hide, get_extra_buttons_visible.

Page 67

KIPR Link Vision Library Functions

camera_close [Category: Vision]
Format: void camera_close();
Cleanup the current camera instance. See also camera_open, camera_open_device.

camera_load_config [Category: Vision]
Format: int camera_load_config(char name[]);
Loads a config file on the KIPR Link in place of the default config file. You must append .config
to the file name for this function to locate it. Returns 1 on success, 0 on failure. See also
camera_open, camera_open_device.

camera_open [Category: Vision]
Format: int camera_open(int res_numb);
Opens the KIPR Link's default channel configuration. The default configuration is selected
from among the channel configurations defined on the KIPR Link using its Settings .. Channels
menu. A resolution of one of LOW_RES, MED_RES, HIGH_RES needs to be specified. Returns
1 on success, 0 on failure. See also camera_open_device, camera_close.

camera_open_device [Category: Vision]
Format: int camera_open_device(int number, int res_numb);
If more than 1 camera is plugged in, 0 is the first camera, 1 is the second camera, etc. Only 1
camera at a time can be used, and the default configuration is selected. A resolution of one of
LOW_RES, MED_RES, HIGH_RES needs to be specified. Returns 1 on success, 0 on failure. See
also camera_open, camera_close.

camera_update [Category: Vision]
Format: int camera_update();
Pulls a new image from the camera for processing. Returns 1 on success, 0 on failure.

get_channel_count [Category: Vision]
Format: int get_channel_count();
Returns the number of channels in the current configuration. See also get_object_count.

get_code_num [Category: Vision]
Format: int get_code_num(int channel, int object);
Returns the data associated with the given channel and object as an integer. If the given
channel or object doesn't exist, -1 is returned. See also get_object_data.

get_object_area [Category: Vision]
Format: int get_object_area(int channel, int object);
Returns the object's bounding box area. -1 is returned if the channel or object doesn't exist.

get_object_bbox [Category: Vision]
Format: rectangle get_object_bbox(int channel, int object);
Returns the bounding box of the given object on the given channel as a rectangle data type.
For example,

rectangle mybox;

mybox = get_object_bbox(0,2);

printf("x coord %d y coord %d\n", mybox.x, mybox.y);

displays the x and y coordinates of bounding box 2 for channel 0.

Page 68

get_object_center [Category: Vision]
Format: point2 get_object_center(int channel, int object);
Returns the (x, y) center of the given object on the given channel as a point2 data type.
For example,

point2 cntr;

cntr = get_object_center(0,2);
printf("Center: x coord %d y coord %d\n", cntr.x, cntr.y);

displays the x and y coordinates of center point of box 2 for channel 0.

get_object_centroid [Category: Vision]
Format: int get_object_centroid(int channel, int object);
Returns The (x, y) coordinates of the centroid of the given object on the given color channel as
a point2 data type (the centroid is the center of mass for the pixels of the specified color). For
example,

point2 cntd;
cntd = get_object_centroid(0,2);

printf("centroid: x coord %d y coord %d\n", cntd.x, cntd.y);

displays the x and y coordinates of centroid of box 2 for color channel 0. The centroid is NOT
the same as the center. It is the center of mass for a blob; e.g., for a color arrow pointing right,
there are more pixels to right of center, so the centroid is to the right of center.

get_object_confidence [Category: Vision]
Format: double get_object_confidence(int channel, int object);
Returns the confidence, between 0.0 and 1.0, that the given object on the given channel is
significant. If the channel or object doesn't exist, 0.0 is returned.

get_object_count [Category: Vision]
Format: int get_object_count(int channel);
Returns the number of objects being "seen" by the specified channel. Objects are sorted by
area, largest first. Returns -1 if channel doesn't exist. See also get_channel_count.

get_object_data [Category: Vision]
Format: char *get_object_data(int channel, int object);
Returns the sequence of character data associated with a given object on a QR channel. If
there is no data associated, 0 is returned. The data is not guaranteed to be null terminated,
but can be accessed using array notation; for example,

get_object_data(0,0)[0]; get_object_data(0,0)[1]; etc.
camera_update will invalidate the pointer returned by get_object_data. See also
get_object_data_length.

get_object_data_length [Category: Vision]
Format: int get_object_data_length(int channel, int object);
Returns the number of characters associated with the QR code on a QR channel. If there is no
data associated, 0 is returned. If the channel or object is invalid, 0 is returned. See also
get_object_data.

Page 69

KIPR Link iRobot Create Library Functions

Create serial interface functions

create_clear_serial_buffer [Category: Create Serial Interface]

Format: void create_clear_serial_buffer ();
Clears the internal serial interface buffer of any unaccessed send/receive data.

create_connect [Category: Create Serial Interface]

Format: int create_connect();

Establishes a USB serial connection between the KIPR Link and a Create module. This statement

is normally paired with an msleep statement, since it takes more than one second for the

communications link to stabilize (msleep(1500) is sufficient). If the program is paused and the

Create is not turned on, the function will block continued execution until the Create is turned

on. This function is always the first step for sending Create Open Interface commands from the

KIPR Link to the Create. By default, the Create starts in create_safe mode.

create_disconnect [Category: Create Serial Interface]

 Format: void create_disconnect();

 Restores the Create to power on configuration (which will also shut off any running motors).

create_read_block [Category: Create Serial Interface]

Format: int create_read_block(char *data, int count);
Uses the serial interface to have the Create send the number of bytes specified into the
character string data. 1 is returned on read success, 0 on failure.

create_write_byte [Category: Create Serial Interface]

Format: void create_write_byte (char byte);

Uses the serial interface to have the KIPR Link send the byte to the iRobot Create.

Create configuration functions

create_full [Category: Create Configuration Function]

Format: void create_full();

Create will move however you tell it (even if that is a bad thing). In particular, the Create will not

stop and disconnect if a wheel drop or cliff sensor goes high.

create_passive [Category: Create Configuration Function]

 Format: void create_passive();

 Puts Create into passive mode (motor commands won't work).

create_safe [Category: Create Configuration Function]

 Format: void create_safe();

Create will move however you tell it (even if that is a bad thing). In particular, the Create will not

stop and disconnect if a wheel drop or cliff sensor goes high.

Page 70

create_start [Category: Create Configuration Function]

 Format: void create_start();

Puts Create back into active mode (all commands will work). Active mode is the default mode at

power on.

get_create_mode [Category: Creat Configuration e Function]

Format: int get_create_mode();

Returns the Create's current operating mode (0=off, 1=passive, 2=safe, 3=full). In passive mode,

motor commands don't work. All commands work in safe or full mode. In safe mode, the Create

will stop all motors and disconnect if any cliff sensors or wheel drop sensors go high. In full

mode, the Create will continue any movement commands and remain connected regardless of

sensor values.

Create movement functions

create_drive [Category: Create Movement Function]

Format: void create_drive(int speed, int radius);

Drives in an arc (see below for point turns and straight). Speed range for all commands is 20-

500mm/sec.

create_drive_direct [Category: Create Movement Function]

 Format: void create_drive_direct(int r_speed, int l_speed);
Specifies individual left and right speeds in mm/sec.

create_drive_straight [Category: Create Movement Function]
Format: void create_drive_straight(int speed);

Drives straight at speed in mm/sec.

create_spin_CW [Category: Create Movement Function]

Format: void create_spin_CW(int speed);

Spins Clockwise with edge speed of speed in mm/sec.

create_spin_CCW [Category: Create Movement Function]

Format: void create_spin_CCW(int speed);

Spins Counterclockwise with edge speed of speed in mm/sec.

create_stop [Category: Create Movement Function]

 Format: void create_stop();

Stops the drive wheels.

get_create_distance [Category: Create Movement Function]

Format: int get_create_distance();

Returns the accumulated distance the Create has traveled since it was turned on or since the

distance was reset. Moving backwards reduces this value. The distance is in millimeters.

get_create_normalized_angle [Category: Create Movement Function]

Format: int get_create_normalized_angle();

Returns the accumulated angle the Create has turned since it was turned on or the distance was

reset, normalized to the range 0 to 359 degrees. Turning CCW increases this value and CW

decreases the value.

Page 71

get_create_overcurrents [Category: Create Movement Function]

Format: int get_create_overcurrents();

Returns the overcurrent status byte where the 16's bit indicates overcurrent in the left wheel;

8's bit overcurrent in the right wheel, 4's bit is LD2, 2's bit is LD0 and 1's bit is LD1 (LD is for the

Create's 3 low side driver outputs, pins 22 to 24 for the connector in the Create cargo bay).

Seldom used in practice.

get_create_requested_left_velocity [Category: Create Movement Function]

Format: int get_create_requested_left_velocity();

Returns the speed the Create is moving (-500 to 500mm/sec) the left wheel according to the

most recent movement command executed.

get_create_requested_radius [Category: Create Movement Function]

Format: int get_create_requested_radius();

Returns the radius the Create is turning (-2000 to 2000mm) according to the most recent

movement command executed.

get_create_requested_right_velocity [Category: Create Movement Function]

Format: int get_create_requested_right_velocity();

Returns the speed the Create is moving (-500 to 500mm/sec) the right wheel according to the

most recent movement command executed.

get_create_requested_velocity [Category: Create Movement Function]

Format: int get_create_requested_velocity();

Returns the speed the Create is moving (-500 to 500mm/s) according to the most recent

movement command executed.

get_create_total_angle [Category: Create Movement Function]

Format: int get_create_total_angle();

Returns the accumulated angle the Create has turned through since it was turned on or since

the distance or angle was reset. Turning CCW increases this value and CW decreases the value.

set_create_distance [Category: Create Movement Function]
Format: void set_create_distance(int dist);

Sets the current value that will be returned by get_create_distance to the value dist.

set_create_normalized_angle [Category: Create Movement Function]

Format: void set_create_normalized_angle(int angle);

Sets the current value that will be returned by get_create_normalized_angle to the value angle.

set_create_total_angle [Category: Create Movement Function]

Format: void set_create_total_angle(int angle);

Sets the current value that will be returned by get_create_total_angle to the value angle.

Create sensor functions

get_create_advance_button [Category: Create Sensor Function]

Format: int get_create_advance_button();

Returns 1 if the advance (>>|) button is being pressed, 0 otherwise.

Page 72

get_create_bay_AI [Category: Create Sensor Function]

 Format: int get_create_bay_AI();

 Returns the 10 bit analog value on pin 4 from the cargo bay.

get_create_bay_DI [Category: Create Sensor Function]

Format: int get_create_bay_DI();

Returns a byte for determining the current digital inputs (0 or 1) being applied to pins 16, 6, 18,

5, and 17 of the connector in the Create cargo bay. The 128, 64, and 32 bits of the byte are not

used. The 16 bit is for pin 15, 8 bit for pin 6, 4 bit for pin 18, 2 bit for pin 5 and 1 bit for pin 17.

Pin 15 is used to alter communications baud rate.

get_create_cwdrop [Category: Create Sensor Function]

Format: int get_create_cwdrop();

Returns 1 if caster wheel has dropped, 0 otherwise.

get_create_infrared [Category: Create Sensor Function]

Format: int get_create_infrared();

Returns the byte detected from an iRobot remote control, Returns 255 if no byte has been

detected.

get_create_lbump [Category: Create Sensor Function]

Format: int get_create_lbump();

Returns 1 if left bumper is pressed, 0 otherwise.

get_create_lcliff [Category: Create Sensor Function]

Format: int get_create_lcliff();

Returns 1 if the left cliff sensor is over a surface that doesn't reflect IR (e.g., black) or over a cliff,

0 otherwise.

get_create_lcliff_amt [Category: Create Sensor Function]

Format: int get_create_lcliff_amt();

Returns the left cliff sensor (analog) reading as a 12 bit value (0 to 4095).

get_create_lfcliff [Category: Create Sensor Function]

Format: int get_create_lfcliff();

Returns 1 if left front cliff sensor is over a surface that doesn't reflect IR (e.g., black) or over a

cliff, 0 otherwise.

get_create_lfcliff_amt [Category: Create Sensor Function]

 Format: int get_create_lfcliff_amt();

 Returns the left front cliff sensor (analog) reading as a 12 bit value (0 to 4095).

get_create_lwdrop [Category: Create Sensor Function]

Format: int get_create_lwdrop();

Returns 1 if the left wheel has dropped, 0 otherwise. Materials supplied with the Create include

two wheel clips that when installed will prevent the drive wheels from dropping.

get_create_number_of_stream_packets [Category: Create Sensor Function]

 Format: int get_create_number_of_stream_packets();

If data streaming is being used, it returns the size of the stream.

Page 73

get_create_play_button [Category: Create Sensor Function]

 Format: int get_create_play_button();

Returns 1 if the play button (>)is being pressed, 0 otherwise.

get_create_rbump [Category: Create Sensor Function]

Format: int get_create_rbump();

Returns 1 if right bumper is pressed, 0 otherwise.

get_create_rcliff [Category: Create Sensor Function]

Format: int get_create_rcliff();

Returns 1 if right cliff sensor is over black or a cliff, 0 otherwise.

get_create_rfcliff [Category: Create Sensor Function]

Format: int get_create_rfcliff();

Returns 1 if right frontcliff sensor is over a surface that doesn't reflect IR (e.g., black) or over a

cliff, 0 otherwise.

get_create_rfcliff_amt [Category: Create Sensor Function]

Format: int get_create_rfcliff_amt();

Returns the right front cliff sensor (analog) reading as a 12 bit value (0 to 4095).

get_create_rwdrop [Category: Create Sensor Function]

Format: int get_create_rwdrop();

Returns 1 if right wheel has dropped, 0 otherwise.

get_create_vwall [Category: Create Sensor Function]

Format: int get_create_vwall();

Returns 1 if a iRobot virtual wall beacon is detected, 0 otherwise.

get_create_wall [Category: Create Sensor Function]

Format: int get_create_wall();

Returns 1 if a wall is detected by the right facing wall sensor, 0 otherwise. There is no left facing

wall sensor.

get_create_wall_amt [Category: Create Sensor Function]

Format: int get_create_wall_amt();

Returns the current wall sensor (analog) reading as a 12 bit value (0 to 4095).

Create battery functions

get_create_battery_capacity [Category: Create Battery Function]

Format: int get_create_battery_capacity();

Returns the battery capacity in mAh

get_create_battery_charge [Category: Create Battery Function]

Format: int get_create_battery_charge();

Returns the battery charge in mAh.

Page 74

get_create_battery_charging_state [Category: Create Battery Function]

Format: int get_create_battery_charging_state();

0-not charging; 1-recondition charging; 2-full charging; 3-trickle charging; 4-waiting; 5-charge

fault. This function is seldom used in practice.

get_create_battery_current [Category: Create Battery Function]

Format: int get_create_battery_current();

Returns the current flow in mA.

get_create_battery_voltage [Category: Create Battery Function]

Format: int get_create_battery_voltage();

Returns the battery voltage in mV.

get_create_battery_temp [Category: Create Battery Function]

Format: int get_create_battery_temp();

Returns the battery temperature in degrees C.

Create built-in script functions

create_spot [Category: Create Built In Script]

 Format: void create_spot();

 Simulates a Roomba doing a spot clean.

create_cover [Category: Create Built In Script]

 Format: void create_cover();

 Simulates a Roomba covering a room.

create_demo [Category: Create Built In Script]

 Format: void create_demo(int d);

 Runs built in demos (see Create Open Interface on web).

create_cover_dock [Category: Create Built In Script]
 Format: void create_cover_dock();

 Create roams around until it sees an IR dock and then attempts to dock

LED and music functions

create_advance_led [Category: Create Music/LED Function]

Format: void create_advance_led(int on);

The value 1 causes the Advance LED light (>>|) to turn on, 0 to turn it off.

create_play_led [Category: Create Music/LED Function]

Format: void create_play_led(int on);

The value 1 causes the Play LED to turn on, 0 to turn it off.

create_play_song [Category: Create Music/LED Function]

Format: void create_play_song(int num);

Plays the specified song that has been loaded onto the Create.

Page 75

create_power_led [Category: Create Music/LED Function]

Format: void create_power_led(int color, int brightness);

The value 0 cases the I/O pwer LED to turn red, 255 to turn green. Brightness ranges from 0 to

255 with 0 representing off.

get_create_song_number [Category: Create Music/LED Function]
Format: int get_create_song_number();

Returns the number of the song currently selected (0 to 15).

get_create_song_playing [Category: Create Music/LED Function]

Format: int get_create_song_playing();

Returns 1 if a song is playing, 0 otherwise.

create_load_song [Category: Create Music/LED Function]

Format: void create_load_song(int num);

Loads a song from an internal 16 by 33 working array of integers to the Create, where the first

column for each song is the number of notes (max is 16). The remaining columns alternate

between pitch and duration. See Create Open Interface on the web for details.

	KIPR Link Manual
	Contents
	1. KIPR Link
	About the KIPR Link
	KIPR Link Basic Features
	Input and Output
	Other Features
	Included Hardware
	KIPR Link Features

	2. Quick Start
	Turning On Your KIPR Link
	Checking the Firmware Version on Your KIPR Link
	Installing the KISS Platform on Your Computer - the KISS IDE
	Downloading and Running a Program for Your KIPR Link

	3. Programming for the KIPR Link
	Using the C Programming Language with the KIPR Link and the KISS IDE
	KIPR Link Function Libraries
	KIPR Link Library Functions for Sensors
	Using Servo Motors
	KIPR Link Library Functions for Servo Motors
	Using DC Drive Motors
	KIPR Link Library Functions for DC Motors
	Other Functions Commonly Used With the KIPR Link

	4. KIPR Link Vision System
	About Color Vision Tracking and QR Codes
	Setting Up KIPR Link Color Tracking Channels
	Setting Up a KIPR Link QR Scanning Channel
	Verifying Channel Behavior
	KIPR Link Vision Library Functions
	Sample color tracking program controlling a servo motor
	Sample color tracking program controlling motor lights
	Sample program for decoding a QR code

	5. Troubleshooting
	6. Appendices
	Updating the KIPR Link Firmware
	Controlling an iRobot Create with the KIPR Link
	iRobot Create KIPR Link Library Functions
	Sample Program for Controlling an iRobot Create with the KIPR Link
	Writing an iRobot Create Script
	Sample Program for Using KIPR Link Digital Output to Light an LED
	Sample Program Using a Thread for Monitoring a Sensor
	File I/O for a USB Flash Drive Plugged into the KIPR Link
	Creating your own sensor
	Creating your own motor
	Setting the sensor ports for 5V or 3.3V
	KIPR Link Main Library Functions
	KIPR Link Vision Library Functions
	KIPR Link iRobot Create Library Functions

